diff --git a/python/llm/example/transformers/transformers_int4/chatglm2/README.md b/python/llm/example/transformers/transformers_int4/chatglm2/README.md index d005ecc2..ff9b051b 100644 --- a/python/llm/example/transformers/transformers_int4/chatglm2/README.md +++ b/python/llm/example/transformers/transformers_int4/chatglm2/README.md @@ -5,7 +5,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4 ## 0. Requirements To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. -## Example: Predict Tokens using `generate()` API +## Example 1: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: @@ -74,3 +74,55 @@ Inference time: xxxx s 答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns ``` + +## Example 2: Stream Chat using `stream_chat()` API +In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with BigDL-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.9 +conda activate llm + +pip install bigdl-llm[all] # install bigdl-llm with 'all' option +``` + +### 2. Run +**Stream Chat using `stream_chat()` API**: +``` +python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION +``` + +**Chat using `chat()` API**: +``` +python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`. +- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`. +- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used. + +> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. +> +> Please select the appropriate size of the ChatGLM2 model based on the capabilities of your machine. + +#### 2.1 Client +On client Windows machine, it is recommended to run directly with full utilization of all cores: +```powershell +$env:PYTHONUNBUFFERED=1 # ensure stdout and stderr streams are sent straight to terminal without being first buffered +python ./streamchat.py +``` + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set BigDL-Nano env variables +source bigdl-nano-init + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +export PYTHONUNBUFFERED=1 # ensure stdout and stderr streams are sent straight to terminal without being first buffered +numactl -C 0-47 -m 0 python ./streamchat.py +``` diff --git a/python/llm/example/transformers/transformers_int4/chatglm2/streamchat.py b/python/llm/example/transformers/transformers_int4/chatglm2/streamchat.py new file mode 100644 index 00000000..3bbf5333 --- /dev/null +++ b/python/llm/example/transformers/transformers_int4/chatglm2/streamchat.py @@ -0,0 +1,62 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from bigdl.llm.transformers import AutoModel +from transformers import AutoTokenizer + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM2 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm2-6b", + help='The huggingface repo id for the ChatGLM2 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办", + help='Qustion you want to ask') + parser.add_argument('--disable-stream', action="store_true", + help='Disable stream chat') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + disable_stream = args.disable_stream + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModel.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + with torch.inference_mode(): + if disable_stream: + # Chat + response, history = model.chat(tokenizer, args.question, history=[]) + print('-'*20, 'Chat Output', '-'*20) + print(response) + else: + # Stream chat + response_ = "" + print('-'*20, 'Stream Chat Output', '-'*20) + for response, history in model.stream_chat(tokenizer, args.question, history=[]): + print(response.replace(response_, ""), end="") + response_ = response