parent
							
								
									5a6211fd56
								
							
						
					
					
						commit
						380717f50d
					
				
					 8 changed files with 181 additions and 17 deletions
				
			
		| 
						 | 
					@ -21,7 +21,7 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
 | 
					pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
					# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
On Windows:
 | 
					On Windows:
 | 
				
			||||||
| 
						 | 
					@ -32,7 +32,7 @@ conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[all]
 | 
					pip install --pre --upgrade ipex-llm[all]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Run
 | 
					### 2. Run
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -22,7 +22,7 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
 | 
					pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
					# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
On Windows:
 | 
					On Windows:
 | 
				
			||||||
| 
						 | 
					@ -33,7 +33,7 @@ conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[all]
 | 
					pip install --pre --upgrade ipex-llm[all]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Run
 | 
					### 2. Run
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -21,7 +21,7 @@ conda activate llm
 | 
				
			||||||
# install the latest ipex-llm nightly build with 'all' option
 | 
					# install the latest ipex-llm nightly build with 'all' option
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
 | 
					pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
 | 
				
			||||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
					# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
On Windows:
 | 
					On Windows:
 | 
				
			||||||
| 
						 | 
					@ -31,7 +31,7 @@ conda create -n llm python=3.11
 | 
				
			||||||
conda activate llm
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[all]
 | 
					pip install --pre --upgrade ipex-llm[all]
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Run
 | 
					### 2. Run
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -20,7 +20,7 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
					# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 1.2 Installation on Windows
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
| 
						 | 
					@ -33,7 +33,7 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
					# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Configures OneAPI environment variables for Linux
 | 
					### 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -18,7 +18,7 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
					# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 1.2 Installation on Windows
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
| 
						 | 
					@ -31,7 +31,7 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
					# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Configures OneAPI environment variables for Linux
 | 
					### 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -20,7 +20,7 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
					# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
				
			||||||
pip install transformers==4.38.1 
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 1.2 Installation on Windows
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
| 
						 | 
					@ -33,7 +33,7 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
					# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
 | 
				
			||||||
pip install transformers==4.38.1
 | 
					pip install "transformers>=4.38.1"
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Configures OneAPI environment variables for Linux
 | 
					### 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1481,21 +1481,32 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
                                module.MistralMLP,
 | 
					                                module.MistralMLP,
 | 
				
			||||||
                                llama_mlp_forward)
 | 
					                                llama_mlp_forward)
 | 
				
			||||||
    elif model.config.model_type == "gemma":
 | 
					    elif model.config.model_type == "gemma":
 | 
				
			||||||
 | 
					        invalidInputError(version.parse(trans_version) >= version.parse("4.38.0"),
 | 
				
			||||||
 | 
					                          "Please upgrade transformers to 4.38.0 or higher version "
 | 
				
			||||||
 | 
					                          "to run Mixtral models.")
 | 
				
			||||||
        modeling_module_name = model.__class__.__module__
 | 
					        modeling_module_name = model.__class__.__module__
 | 
				
			||||||
        module = importlib.import_module(modeling_module_name)
 | 
					        module = importlib.import_module(modeling_module_name)
 | 
				
			||||||
 | 
					        if version.parse(trans_version) >= version.parse("4.39.0"):
 | 
				
			||||||
 | 
					            from ipex_llm.transformers.models.gemma import gemma_attention_forward_4_39
 | 
				
			||||||
 | 
					            convert_forward(model,
 | 
				
			||||||
 | 
					                            module.GemmaAttention,
 | 
				
			||||||
 | 
					                            gemma_attention_forward_4_39
 | 
				
			||||||
 | 
					                            )
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
            from ipex_llm.transformers.models.gemma import gemma_attention_forward
 | 
					            from ipex_llm.transformers.models.gemma import gemma_attention_forward
 | 
				
			||||||
        from ipex_llm.transformers.models.gemma import gemma_rms_norm_forward
 | 
					 | 
				
			||||||
        from ipex_llm.transformers.models.gemma import gemma_mlp_forward
 | 
					 | 
				
			||||||
            convert_forward(model,
 | 
					            convert_forward(model,
 | 
				
			||||||
                            module.GemmaAttention,
 | 
					                            module.GemmaAttention,
 | 
				
			||||||
                            gemma_attention_forward,
 | 
					                            gemma_attention_forward,
 | 
				
			||||||
                            )
 | 
					                            )
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.gemma import gemma_rms_norm_forward
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.gemma import gemma_mlp_forward
 | 
				
			||||||
        convert_forward(model,
 | 
					        convert_forward(model,
 | 
				
			||||||
                        module.GemmaRMSNorm,
 | 
					                        module.GemmaRMSNorm,
 | 
				
			||||||
                        gemma_rms_norm_forward)
 | 
					                        gemma_rms_norm_forward)
 | 
				
			||||||
        convert_forward(model,
 | 
					        convert_forward(model,
 | 
				
			||||||
                        module.GemmaMLP,
 | 
					                        module.GemmaMLP,
 | 
				
			||||||
                        gemma_mlp_forward)
 | 
					                        gemma_mlp_forward)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    elif model.config.model_type == "gemma2":
 | 
					    elif model.config.model_type == "gemma2":
 | 
				
			||||||
        modeling_module_name = model.__class__.__module__
 | 
					        modeling_module_name = model.__class__.__module__
 | 
				
			||||||
        module = importlib.import_module(modeling_module_name)
 | 
					        module = importlib.import_module(modeling_module_name)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -267,3 +267,156 @@ def gemma_attention_forward(
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
					    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gemma_attention_forward_4_39(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor]=None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor]=None,
 | 
				
			||||||
 | 
					    past_key_value: Optional[Tuple[torch.Tensor]]=None,
 | 
				
			||||||
 | 
					    output_attentions: bool=False,
 | 
				
			||||||
 | 
					    use_cache: bool=False,
 | 
				
			||||||
 | 
					    cache_position: Optional[torch.Tensor]=None,
 | 
				
			||||||
 | 
					) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
				
			||||||
 | 
					    bsz, q_len, hidden_size = hidden_states.size()
 | 
				
			||||||
 | 
					    device = hidden_states.device
 | 
				
			||||||
 | 
					    # for flash attention
 | 
				
			||||||
 | 
					    original_dtype = hidden_states.dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
				
			||||||
 | 
					    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
				
			||||||
 | 
					    decoding_fast_path = use_decoding_fast_path(self.q_proj,
 | 
				
			||||||
 | 
					                                                use_fuse_rope,
 | 
				
			||||||
 | 
					                                                enough_kv_room,
 | 
				
			||||||
 | 
					                                                bsz * q_len)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if decoding_fast_path:
 | 
				
			||||||
 | 
					        hidden_states = hidden_states.view(1, -1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
 | 
					        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        import xe_linear
 | 
				
			||||||
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
 | 
					                                                                       position_ids,
 | 
				
			||||||
 | 
					                                                                       cache_k, cache_v,
 | 
				
			||||||
 | 
					                                                                       self.q_proj.weight.qtype,
 | 
				
			||||||
 | 
					                                                                       self.v_proj.weight.qtype,
 | 
				
			||||||
 | 
					                                                                       kv_seq_len,
 | 
				
			||||||
 | 
					                                                                       self.head_dim)
 | 
				
			||||||
 | 
					        kv_seq_len += 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # update past_key_value's seem_tokens and kv caches.
 | 
				
			||||||
 | 
					        if self.layer_idx == 0:
 | 
				
			||||||
 | 
					            past_key_value._seen_tokens = kv_seq_len
 | 
				
			||||||
 | 
					        past_key_value.key_cache[self.layer_idx] = key_states
 | 
				
			||||||
 | 
					        past_key_value.value_cache[self.layer_idx] = value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        query_states = self.q_proj(hidden_states)
 | 
				
			||||||
 | 
					        key_states = self.k_proj(hidden_states)
 | 
				
			||||||
 | 
					        value_states = self.v_proj(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        key_states = key_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        value_states = value_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        kv_seq_len = key_states.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if past_key_value is not None:
 | 
				
			||||||
 | 
					            if self.layer_idx is None:
 | 
				
			||||||
 | 
					                invalidInputError(False,
 | 
				
			||||||
 | 
					                                  "The cache structure has changed since version v4.36. "
 | 
				
			||||||
 | 
					                                  f"If you are using {self.__class__.__name__} for "
 | 
				
			||||||
 | 
					                                  "auto-regressive decodingwith k/v caching, please make sure "
 | 
				
			||||||
 | 
					                                  "to initialize the attention class with a layer index.")
 | 
				
			||||||
 | 
					            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if use_fuse_rope:
 | 
				
			||||||
 | 
					            cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
 | 
				
			||||||
 | 
					            query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
 | 
				
			||||||
 | 
					                                                                           sin, cos, "gemma")
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
 | 
				
			||||||
 | 
					            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
				
			||||||
 | 
					                                                            cos, sin, None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if past_key_value is not None:
 | 
				
			||||||
 | 
					            # update the number of seen tokens
 | 
				
			||||||
 | 
					            if self.layer_idx == 0:
 | 
				
			||||||
 | 
					                past_key_value._seen_tokens += key_states.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # reuse k, v, self_attention
 | 
				
			||||||
 | 
					            # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
 | 
				
			||||||
 | 
					            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
				
			||||||
 | 
					                past_key_value.key_cache.append(key_states)
 | 
				
			||||||
 | 
					                past_key_value.value_cache.append(value_states)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
 | 
					                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                if not enough_kv_room:
 | 
				
			||||||
 | 
					                    # allocate new
 | 
				
			||||||
 | 
					                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
				
			||||||
 | 
					                                                       self.num_key_value_heads,  # Support GQA
 | 
				
			||||||
 | 
					                                                       self.head_dim,
 | 
				
			||||||
 | 
					                                                       cache_k.size(2),
 | 
				
			||||||
 | 
					                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
				
			||||||
 | 
					                                                       dtype=cache_k.dtype,
 | 
				
			||||||
 | 
					                                                       device=device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    new_c_k[:] = cache_k
 | 
				
			||||||
 | 
					                    new_c_v[:] = cache_v
 | 
				
			||||||
 | 
					                    cache_k = new_c_k
 | 
				
			||||||
 | 
					                    cache_v = new_c_v
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                key_states, value_states = append_kv_cache(cache_k, cache_v,
 | 
				
			||||||
 | 
					                                                           key_states, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # update past_key_value
 | 
				
			||||||
 | 
					                past_key_value.key_cache[self.layer_idx] = key_states
 | 
				
			||||||
 | 
					                past_key_value.value_cache[self.layer_idx] = value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # repeat k/v heads if n_kv_heads < n_heads
 | 
				
			||||||
 | 
					    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if attention_mask is not None:  # no matter the length, we just slice it
 | 
				
			||||||
 | 
					        if cache_position is not None:
 | 
				
			||||||
 | 
					            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            causal_mask = attention_mask
 | 
				
			||||||
 | 
					        attn_weights = attn_weights + causal_mask
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # upcast attention to fp32
 | 
				
			||||||
 | 
					    attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
				
			||||||
 | 
					                                         dtype=torch.float32).to(query_states.dtype)
 | 
				
			||||||
 | 
					    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
				
			||||||
 | 
					                                         training=self.training)
 | 
				
			||||||
 | 
					    attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
				
			||||||
 | 
					        invalidInputError(
 | 
				
			||||||
 | 
					            False,
 | 
				
			||||||
 | 
					            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
 | 
				
			||||||
 | 
					            f" {attn_output.size()}"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = attn_output.view(bsz, q_len, -1)
 | 
				
			||||||
 | 
					    attn_output = self.o_proj(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not output_attentions:
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue