fix minicpm for transformers>=4.39 (#11533)
* fix minicpm for transformers>=4.39
This commit is contained in:
parent
0209427cf4
commit
5a6211fd56
6 changed files with 320 additions and 5 deletions
|
|
@ -17,6 +17,7 @@ conda activate llm
|
|||
|
||||
# install ipex-llm with 'all' option
|
||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
pip install "transformers>=4.36"
|
||||
```
|
||||
On Windows:
|
||||
|
||||
|
|
@ -25,6 +26,7 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
pip install "transformers>=4.36"
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@ conda activate llm
|
|||
|
||||
# install the latest ipex-llm nightly build with 'all' option
|
||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
pip install "transformers>=4.36"
|
||||
```
|
||||
|
||||
On Windows:
|
||||
|
|
@ -28,6 +29,7 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
pip install "transformers>=4.36"
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
|
|
|
|||
|
|
@ -14,6 +14,7 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install "transformers>=4.36"
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -24,6 +25,7 @@ conda activate llm
|
|||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install "transformers>=4.36"
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -14,6 +14,7 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install "transformers>=4.36"
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -24,6 +25,7 @@ conda activate llm
|
|||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install "transformers>=4.36"
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -1673,19 +1673,27 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
stablelm_model_forward
|
||||
)
|
||||
elif model.config.model_type == 'minicpm':
|
||||
from ipex_llm.transformers.models.minicpm import minicpm_attention_forward
|
||||
from ipex_llm.transformers.models.minicpm import minicpm_model_forward
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
if version.parse(trans_version) >= version.parse("4.39.0"):
|
||||
from ipex_llm.transformers.models.minicpm import minicpm_attention_forward_4_39
|
||||
convert_forward(model,
|
||||
module.MiniCPMAttention,
|
||||
minicpm_attention_forward_4_39)
|
||||
else:
|
||||
from ipex_llm.transformers.models.minicpm import minicpm_attention_forward
|
||||
convert_forward(model,
|
||||
module.MiniCPMAttention,
|
||||
minicpm_attention_forward)
|
||||
from ipex_llm.transformers.models.minicpm import minicpm_model_forward
|
||||
|
||||
convert_forward(model,
|
||||
module.MiniCPMMLP,
|
||||
llama_mlp_forward)
|
||||
convert_forward(model,
|
||||
module.MiniCPMRMSNorm,
|
||||
llama_rms_norm_forward)
|
||||
convert_forward(model,
|
||||
module.MiniCPMAttention,
|
||||
minicpm_attention_forward)
|
||||
|
||||
convert_forward(model,
|
||||
module.MiniCPMModel,
|
||||
minicpm_model_forward)
|
||||
|
|
|
|||
|
|
@ -767,3 +767,302 @@ def minicpm_model_forward_internal(
|
|||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
def minicpm_attention_forward_original_4_39(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[List[torch.FloatTensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
||||
"Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
bsz, q_len, hidden_size = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
# for flash attention
|
||||
original_dtype = hidden_states.dtype
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
|
||||
no_tp = not self.config.pretraining_tp > 1
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len,
|
||||
llama_decoding_fast_path_qtype_check) and no_tp
|
||||
|
||||
# single batch decoding fast path
|
||||
# forward_qkv takes will perform QKV projection, rotary position embedding
|
||||
# and save the key/value states to cache, then return query states and the
|
||||
# extended key/value cache
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
kv_seq_len += 1
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
past_key_value._seen_tokens = kv_seq_len
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
else:
|
||||
if self.config.pretraining_tp > 1:
|
||||
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
|
||||
self.config.pretraining_tp)
|
||||
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
|
||||
// self.config.pretraining_tp, dim=0)
|
||||
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
||||
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
||||
|
||||
query_states = [F.linear(hidden_states, query_slices[i])
|
||||
for i in range(self.config.pretraining_tp)]
|
||||
query_states = torch.cat(query_states, dim=-1)
|
||||
|
||||
key_states = [F.linear(hidden_states, key_slices[i])
|
||||
for i in range(self.config.pretraining_tp)]
|
||||
key_states = torch.cat(key_states, dim=-1)
|
||||
|
||||
value_states = [F.linear(hidden_states, value_slices[i])
|
||||
for i in range(self.config.pretraining_tp)]
|
||||
value_states = torch.cat(value_states, dim=-1)
|
||||
else:
|
||||
if fp16_fusion_check(self.q_proj, hidden_states, self.training) and \
|
||||
hidden_size == 4096 and self.q_proj.out_features == self.k_proj.out_features:
|
||||
# only use mm_qkv_out on pvc for llama-7b
|
||||
if not hasattr(self, "qkv_proj_weight"):
|
||||
self.qkv_proj_weight = torch.stack([self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight]).contiguous()
|
||||
self.q_proj.weight.data = self.qkv_proj_weight[0, :, :]
|
||||
self.k_proj.weight.data = self.qkv_proj_weight[1, :, :]
|
||||
self.v_proj.weight.data = self.qkv_proj_weight[2, :, :]
|
||||
torch.xpu.empty_cache()
|
||||
query_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
|
||||
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||
key_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
|
||||
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||
value_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
|
||||
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||
torch.ops.torch_ipex.mm_qkv_out(
|
||||
hidden_states, self.qkv_proj_weight, None,
|
||||
query_states, key_states, value_states
|
||||
)
|
||||
else:
|
||||
if should_use_xetla_mm_qkv(self, device):
|
||||
if not hasattr(self, "qkv_proj_qweight"):
|
||||
self.qkv_proj_qweight = fuse_qkv_weight_xetla(self.q_proj,
|
||||
self.k_proj,
|
||||
self.v_proj,
|
||||
self.q_proj.weight.qtype,)
|
||||
import xe_linear
|
||||
q_out_len = self.q_proj.out_len
|
||||
k_out_len = self.k_proj.out_len
|
||||
v_out_len = self.v_proj.out_len
|
||||
qkv_states = xe_linear.mm_xetla(hidden_states,
|
||||
self.qkv_proj_qweight,
|
||||
self.q_proj.weight.qtype)
|
||||
query_states = qkv_states[:, :, :q_out_len]
|
||||
key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
|
||||
value_states = qkv_states[:, :, q_out_len + k_out_len:]
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len,
|
||||
self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(False,
|
||||
"The cache structure has changed since version v4.36. "
|
||||
f"If you are using {self.__class__.__name__} for "
|
||||
"auto-regressive decodingwith k/v caching, please make sure "
|
||||
"to initialize the attention class with a layer index.")
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
if use_fuse_rope:
|
||||
import xe_addons
|
||||
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
||||
query_states, key_states)
|
||||
else:
|
||||
if cache_position is not None:
|
||||
# for transformers 4.38.0
|
||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "llama2")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "llama")
|
||||
|
||||
if past_key_value is not None:
|
||||
# update the number of seen tokens
|
||||
if self.layer_idx == 0:
|
||||
past_key_value._seen_tokens += key_states.shape[-2]
|
||||
|
||||
# reuse k, v, self_attention
|
||||
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
past_key_value.key_cache.append(key_states)
|
||||
past_key_value.value_cache.append(value_states)
|
||||
else:
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
if not enough_kv_room:
|
||||
# allocate new
|
||||
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
|
||||
new_c_k[:] = cache_k
|
||||
new_c_v[:] = cache_v
|
||||
cache_k = new_c_k
|
||||
cache_v = new_c_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k,
|
||||
cache_v,
|
||||
key_states,
|
||||
value_states)
|
||||
|
||||
# update past_key_value
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
if cache_position is not None:
|
||||
new_attention_mask = attention_mask[:, :, kv_seq_len - q_len:kv_seq_len, 0:kv_seq_len]
|
||||
else:
|
||||
new_attention_mask = attention_mask
|
||||
|
||||
if not self.training and not hidden_states.requires_grad and \
|
||||
use_flash_attention(query_states, key_states, new_attention_mask):
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
# now only use flash attention for first token
|
||||
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
|
||||
key_states.to(device, dtype=torch.float16),
|
||||
value_states.to(device, dtype=torch.float16),
|
||||
is_causal=True)
|
||||
attn_weights = None
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
new_attention_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
else:
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
# otherwise, use native attention
|
||||
if query_states.device.type == "xpu":
|
||||
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
||||
new_attention_mask, cache_position,
|
||||
bsz, q_len, kv_seq_len,
|
||||
self.head_dim, self.num_heads, output_attentions)
|
||||
else:
|
||||
# CPU path
|
||||
if not output_attentions:
|
||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_mask=new_attention_mask,
|
||||
dropout_p=self.attention_dropout if self.training else 0.0,
|
||||
# The q_len > 1 is necessary to match with
|
||||
# AttentionMaskConverter.to_causal_4d that
|
||||
# does not create a causal mask in case q_len == 1.
|
||||
is_causal=self.is_causal and new_attention_mask is None and q_len > 1,
|
||||
)
|
||||
else:
|
||||
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
||||
new_attention_mask, cache_position,
|
||||
bsz, q_len, kv_seq_len,
|
||||
self.head_dim,
|
||||
self.num_heads, output_attentions)
|
||||
|
||||
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||
if attn_output.size() != attn_output_size:
|
||||
invalidInputError(False,
|
||||
f"`attn_output` should be of size {attn_output_size},"
|
||||
f" but is {attn_output.size()}")
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
if self.config.pretraining_tp > 1:
|
||||
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||||
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
|
||||
dim=1)
|
||||
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
|
||||
for i in range(self.config.pretraining_tp)])
|
||||
else:
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
||||
|
||||
def minicpm_attention_forward_4_39(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[List[torch.FloatTensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
|
||||
if use_quantize_kv_cache(self.q_proj, hidden_states):
|
||||
forward_function = minicpm_attention_forward_quantized
|
||||
else:
|
||||
forward_function = minicpm_attention_forward_original_4_39
|
||||
return forward_function(
|
||||
self=self,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
kwargs=kwargs
|
||||
)
|
||||
|
|
|
|||
Loading…
Reference in a new issue