fix gemma for 4.41 (#11531)

* fix gemma for 4.41
This commit is contained in:
Guoqiong Song 2024-07-18 15:02:50 -07:00 committed by GitHub
parent 5a6211fd56
commit 380717f50d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 181 additions and 17 deletions

View file

@ -21,7 +21,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
On Windows:
@ -32,7 +32,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
### 2. Run

View file

@ -22,7 +22,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
On Windows:
@ -33,7 +33,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
### 2. Run

View file

@ -21,7 +21,7 @@ conda activate llm
# install the latest ipex-llm nightly build with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
On Windows:
@ -31,7 +31,7 @@ conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
### 2. Run

View file

@ -20,7 +20,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
#### 1.2 Installation on Windows
@ -33,7 +33,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
### 2. Configures OneAPI environment variables for Linux

View file

@ -18,7 +18,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
#### 1.2 Installation on Windows
@ -31,7 +31,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
### 2. Configures OneAPI environment variables for Linux

View file

@ -20,7 +20,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
#### 1.2 Installation on Windows
@ -33,7 +33,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
pip install transformers==4.38.1
pip install "transformers>=4.38.1"
```
### 2. Configures OneAPI environment variables for Linux

View file

@ -1481,21 +1481,32 @@ def _optimize_post(model, lightweight_bmm=False):
module.MistralMLP,
llama_mlp_forward)
elif model.config.model_type == "gemma":
invalidInputError(version.parse(trans_version) >= version.parse("4.38.0"),
"Please upgrade transformers to 4.38.0 or higher version "
"to run Mixtral models.")
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.gemma import gemma_attention_forward
if version.parse(trans_version) >= version.parse("4.39.0"):
from ipex_llm.transformers.models.gemma import gemma_attention_forward_4_39
convert_forward(model,
module.GemmaAttention,
gemma_attention_forward_4_39
)
else:
from ipex_llm.transformers.models.gemma import gemma_attention_forward
convert_forward(model,
module.GemmaAttention,
gemma_attention_forward,
)
from ipex_llm.transformers.models.gemma import gemma_rms_norm_forward
from ipex_llm.transformers.models.gemma import gemma_mlp_forward
convert_forward(model,
module.GemmaAttention,
gemma_attention_forward,
)
convert_forward(model,
module.GemmaRMSNorm,
gemma_rms_norm_forward)
convert_forward(model,
module.GemmaMLP,
gemma_mlp_forward)
elif model.config.model_type == "gemma2":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)

View file

@ -267,3 +267,156 @@ def gemma_attention_forward(
attn_weights = None
return attn_output.to(original_dtype), attn_weights, past_key_value
def gemma_attention_forward_4_39(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor]=None,
position_ids: Optional[torch.LongTensor]=None,
past_key_value: Optional[Tuple[torch.Tensor]]=None,
output_attentions: bool=False,
use_cache: bool=False,
cache_position: Optional[torch.Tensor]=None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, hidden_size = hidden_states.size()
device = hidden_states.device
# for flash attention
original_dtype = hidden_states.dtype
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
decoding_fast_path = use_decoding_fast_path(self.q_proj,
use_fuse_rope,
enough_kv_room,
bsz * q_len)
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
kv_seq_len = cache_k.shape[-2]
import xe_linear
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
cache_k, cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
kv_seq_len,
self.head_dim)
kv_seq_len += 1
# update past_key_value's seem_tokens and kv caches.
if self.layer_idx == 0:
past_key_value._seen_tokens = kv_seq_len
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(False,
"The cache structure has changed since version v4.36. "
f"If you are using {self.__class__.__name__} for "
"auto-regressive decodingwith k/v caching, please make sure "
"to initialize the attention class with a layer index.")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
if use_fuse_rope:
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
sin, cos, "gemma")
else:
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, None)
if past_key_value is not None:
# update the number of seen tokens
if self.layer_idx == 0:
past_key_value._seen_tokens += key_states.shape[-2]
# reuse k, v, self_attention
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
if len(past_key_value.key_cache) <= self.layer_idx:
past_key_value.key_cache.append(key_states)
past_key_value.value_cache.append(value_states)
else:
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
if not enough_kv_room:
# allocate new
new_c_k, new_c_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_c_k[:] = cache_k
new_c_v[:] = cache_v
cache_k = new_c_k
cache_v = new_c_v
key_states, value_states = append_kv_cache(cache_k, cache_v,
key_states, value_states)
# update past_key_value
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
if cache_position is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
else:
causal_mask = attention_mask
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
invalidInputError(
False,
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output.to(original_dtype), attn_weights, past_key_value