parent
5a6211fd56
commit
380717f50d
8 changed files with 181 additions and 17 deletions
|
|
@ -21,7 +21,7 @@ conda activate llm
|
|||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
On Windows:
|
||||
|
|
@ -32,7 +32,7 @@ conda activate llm
|
|||
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ conda activate llm
|
|||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
On Windows:
|
||||
|
|
@ -33,7 +33,7 @@ conda activate llm
|
|||
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ conda activate llm
|
|||
# install the latest ipex-llm nightly build with 'all' option
|
||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
On Windows:
|
||||
|
|
@ -31,7 +31,7 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade ipex-llm[all]
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ conda activate llm
|
|||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -33,7 +33,7 @@ conda activate llm
|
|||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ conda activate llm
|
|||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -31,7 +31,7 @@ conda activate llm
|
|||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
# According to Gemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ conda activate llm
|
|||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -33,7 +33,7 @@ conda activate llm
|
|||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
# According to CodeGemma's requirement, please make sure you are using a stable version of Transformers, 4.38.1 or newer.
|
||||
pip install transformers==4.38.1
|
||||
pip install "transformers>=4.38.1"
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -1481,21 +1481,32 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
module.MistralMLP,
|
||||
llama_mlp_forward)
|
||||
elif model.config.model_type == "gemma":
|
||||
invalidInputError(version.parse(trans_version) >= version.parse("4.38.0"),
|
||||
"Please upgrade transformers to 4.38.0 or higher version "
|
||||
"to run Mixtral models.")
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from ipex_llm.transformers.models.gemma import gemma_attention_forward
|
||||
if version.parse(trans_version) >= version.parse("4.39.0"):
|
||||
from ipex_llm.transformers.models.gemma import gemma_attention_forward_4_39
|
||||
convert_forward(model,
|
||||
module.GemmaAttention,
|
||||
gemma_attention_forward_4_39
|
||||
)
|
||||
else:
|
||||
from ipex_llm.transformers.models.gemma import gemma_attention_forward
|
||||
convert_forward(model,
|
||||
module.GemmaAttention,
|
||||
gemma_attention_forward,
|
||||
)
|
||||
from ipex_llm.transformers.models.gemma import gemma_rms_norm_forward
|
||||
from ipex_llm.transformers.models.gemma import gemma_mlp_forward
|
||||
convert_forward(model,
|
||||
module.GemmaAttention,
|
||||
gemma_attention_forward,
|
||||
)
|
||||
convert_forward(model,
|
||||
module.GemmaRMSNorm,
|
||||
gemma_rms_norm_forward)
|
||||
convert_forward(model,
|
||||
module.GemmaMLP,
|
||||
gemma_mlp_forward)
|
||||
|
||||
elif model.config.model_type == "gemma2":
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
|
|
|
|||
|
|
@ -267,3 +267,156 @@ def gemma_attention_forward(
|
|||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
||||
|
||||
def gemma_attention_forward_4_39(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor]=None,
|
||||
position_ids: Optional[torch.LongTensor]=None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]]=None,
|
||||
output_attentions: bool=False,
|
||||
use_cache: bool=False,
|
||||
cache_position: Optional[torch.Tensor]=None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, hidden_size = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
# for flash attention
|
||||
original_dtype = hidden_states.dtype
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len)
|
||||
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
kv_seq_len += 1
|
||||
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
past_key_value._seen_tokens = kv_seq_len
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(False,
|
||||
"The cache structure has changed since version v4.36. "
|
||||
f"If you are using {self.__class__.__name__} for "
|
||||
"auto-regressive decodingwith k/v caching, please make sure "
|
||||
"to initialize the attention class with a layer index.")
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
if use_fuse_rope:
|
||||
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
||||
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
|
||||
sin, cos, "gemma")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, None)
|
||||
|
||||
if past_key_value is not None:
|
||||
# update the number of seen tokens
|
||||
if self.layer_idx == 0:
|
||||
past_key_value._seen_tokens += key_states.shape[-2]
|
||||
|
||||
# reuse k, v, self_attention
|
||||
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
past_key_value.key_cache.append(key_states)
|
||||
past_key_value.value_cache.append(value_states)
|
||||
else:
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
if not enough_kv_room:
|
||||
# allocate new
|
||||
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
|
||||
new_c_k[:] = cache_k
|
||||
new_c_v[:] = cache_v
|
||||
cache_k = new_c_k
|
||||
cache_v = new_c_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k, cache_v,
|
||||
key_states, value_states)
|
||||
|
||||
# update past_key_value
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
if cache_position is not None:
|
||||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||
else:
|
||||
causal_mask = attention_mask
|
||||
attn_weights = attn_weights + causal_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||
training=self.training)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
||||
attn_output = attn_output.view(bsz, q_len, -1)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
|
|
|||
Loading…
Reference in a new issue