Add CPU examples of fuyu (#9393)
* add fuyu cpu examples * add gpu example * add comments * add license * remove gpu example * fix inference time
This commit is contained in:
		
							parent
							
								
									df8e4d7889
								
							
						
					
					
						commit
						36fbe2144d
					
				
					 6 changed files with 284 additions and 0 deletions
				
			
		| 
						 | 
					@ -163,6 +163,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
				
			||||||
| InternLM-XComposer  | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer)   |    |
 | 
					| InternLM-XComposer  | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer)   |    |
 | 
				
			||||||
| WizardCoder-Python | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
 | 
					| WizardCoder-Python | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
 | 
				
			||||||
| CodeShell | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | |
 | 
					| CodeShell | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | |
 | 
				
			||||||
 | 
					| Fuyu      | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/fuyu) | |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
					***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -70,6 +70,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
				
			||||||
| InternLM-XComposer    | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer)   |   |
 | 
					| InternLM-XComposer    | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer)   |   |
 | 
				
			||||||
| WizardCoder-Python | [link](example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
 | 
					| WizardCoder-Python | [link](example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
 | 
				
			||||||
| CodeShell | [link](example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | |
 | 
					| CodeShell | [link](example/CPU/HF-Transformers-AutoModels/Model/CodeShell) | |
 | 
				
			||||||
 | 
					| Fuyu      | [link](example/CPU/HF-Transformers-AutoModels/Model/fuyu) | |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Working with `bigdl-llm`
 | 
					### Working with `bigdl-llm`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,74 @@
 | 
				
			||||||
 | 
					# Fuyu
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Fuyu models. For illustration purposes, we utilize the [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b) as a reference Fuyu model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for an Fuyu model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					After installing conda, create a Python environment for BigDL-LLM:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install transformers==4.35 pillow # additional package required for Fuyu to conduct generation
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Run
 | 
				
			||||||
 | 
					After setting up the Python environment, you could run the example by following steps.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> Please select the appropriate size of the Fuyu model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					```powershell
 | 
				
			||||||
 | 
					python ./generate.py --image-path demo.jpg
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# set BigDL-Nano env variables
 | 
				
			||||||
 | 
					source bigdl-nano-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./generate.py --image-path demo.jpg
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.3 Arguments Info
 | 
				
			||||||
 | 
					In the example, several arguments can be passed to satisfy your requirements:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Fuyu model (e.g. `adept/fuyu-8b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'adept/fuyu-8b'`.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be inferred (with the image for chat). It is default to be `'Generate a coco-style caption.'`.
 | 
				
			||||||
 | 
					- `--image-path IMAGE_PATH`: argument defining the input image that the chat will focus on. It is required and should be a local path (not url).
 | 
				
			||||||
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `512`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.4 Sample Output
 | 
				
			||||||
 | 
					#### [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					Generate a coco-style caption.
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					An orange bus parked on the side of a road.
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=178242)):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[demo.jpg](https://cocodataset.org/#explore?id=178242)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<a href="http://farm6.staticflickr.com/5331/8954873157_539393fece_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5331/8954873157_539393fece_z.jpg" ></a>
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,66 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from transformers import FuyuProcessor
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					from PIL import Image
 | 
				
			||||||
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Fuyu model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="adept/fuyu-8b",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the Fuyu model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="Generate a coco-style caption.",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--image-path', type=str, required=True,
 | 
				
			||||||
 | 
					                        help='Image path for the input image that the chat will focus on')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=512, help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					    prompt = args.prompt
 | 
				
			||||||
 | 
					    image = Image.open(args.image_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model
 | 
				
			||||||
 | 
					    # For successful BigDL-LLM optimization on Fuyu, skip the 'vision_embed_tokens' module during optimization
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cpu',
 | 
				
			||||||
 | 
					                                                 load_in_4bit = True,
 | 
				
			||||||
 | 
					                                                 trust_remote_code=True,
 | 
				
			||||||
 | 
					                                                 modules_to_not_convert=['vision_embed_tokens'])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load processor
 | 
				
			||||||
 | 
					    processor = FuyuProcessor.from_pretrained(model_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        inputs = processor(text=prompt, images=image, return_tensors="pt")
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        generation_outputs = model.generate(**inputs,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        outputs = processor.batch_decode(generation_outputs[:, -args.n_predict:], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        for output in outputs:
 | 
				
			||||||
 | 
					            # '\x04' is the "beginning of answer" token
 | 
				
			||||||
 | 
					            # See https://huggingface.co/adept/fuyu-8b#how-to-use
 | 
				
			||||||
 | 
					            answer = output.split('\x04 ', 1)[1] if '\x04' in output else ''
 | 
				
			||||||
 | 
					            print(answer)
 | 
				
			||||||
							
								
								
									
										74
									
								
								python/llm/example/CPU/PyTorch-Models/Model/fuyu/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								python/llm/example/CPU/PyTorch-Models/Model/fuyu/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,74 @@
 | 
				
			||||||
 | 
					# Fuyu
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Fuyu models. For illustration purposes, we utilize the [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b) as a reference Fuyu model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for an Fuyu model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					After installing conda, create a Python environment for BigDL-LLM:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install transformers==4.35 pillow # additional package required for Fuyu to conduct generation
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Run
 | 
				
			||||||
 | 
					After setting up the Python environment, you could run the example by following steps.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> Please select the appropriate size of the Fuyu model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					```powershell
 | 
				
			||||||
 | 
					python ./generate.py --image-path demo.jpg
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# set BigDL-Nano env variables
 | 
				
			||||||
 | 
					source bigdl-nano-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./generate.py --image-path demo.jpg
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.3 Arguments Info
 | 
				
			||||||
 | 
					In the example, several arguments can be passed to satisfy your requirements:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Fuyu model (e.g. `adept/fuyu-8b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'adept/fuyu-8b'`.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be inferred (with the image for chat). It is default to be `'Generate a coco-style caption.'`.
 | 
				
			||||||
 | 
					- `--image-path IMAGE_PATH`: argument defining the input image that the chat will focus on. It is required and should be a local path (not url).
 | 
				
			||||||
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `512`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.4 Sample Output
 | 
				
			||||||
 | 
					#### [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					Generate a coco-style caption.
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					An orange bus parked on the side of a road.
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=178242)):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[demo.jpg](https://cocodataset.org/#explore?id=178242)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<a href="http://farm6.staticflickr.com/5331/8954873157_539393fece_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5331/8954873157_539393fece_z.jpg" ></a>
 | 
				
			||||||
							
								
								
									
										68
									
								
								python/llm/example/CPU/PyTorch-Models/Model/fuyu/generate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										68
									
								
								python/llm/example/CPU/PyTorch-Models/Model/fuyu/generate.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,68 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from transformers import AutoModelForCausalLM, FuyuProcessor
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					from PIL import Image
 | 
				
			||||||
 | 
					from bigdl.llm import optimize_model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Fuyu model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="adept/fuyu-8b",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the Fuyu model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="Generate a coco-style caption.",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--image-path', type=str, required=True,
 | 
				
			||||||
 | 
					                        help='Image path for the input image that the chat will focus on')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=512, help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					    prompt = args.prompt
 | 
				
			||||||
 | 
					    image = Image.open(args.image_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cpu', trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # With only one line to enable BigDL-LLM optimization on model
 | 
				
			||||||
 | 
					    # For successful BigDL-LLM optimization on Fuyu, skip the 'vision_embed_tokens' module during optimization
 | 
				
			||||||
 | 
					    model = optimize_model(model,
 | 
				
			||||||
 | 
					                           low_bit='sym_int4',
 | 
				
			||||||
 | 
					                           modules_to_not_convert=['vision_embed_tokens'])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load processor
 | 
				
			||||||
 | 
					    processor = FuyuProcessor.from_pretrained(model_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        inputs = processor(text=prompt, images=image, return_tensors="pt")
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        generation_outputs = model.generate(**inputs,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        outputs = processor.batch_decode(generation_outputs[:, -args.n_predict:], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        for output in outputs:
 | 
				
			||||||
 | 
					            # '\x04' is the "beginning of answer" token
 | 
				
			||||||
 | 
					            # See https://huggingface.co/adept/fuyu-8b#how-to-use
 | 
				
			||||||
 | 
					            answer = output.split('\x04 ', 1)[1] if '\x04' in output else ''
 | 
				
			||||||
 | 
					            print(answer)
 | 
				
			||||||
		Loading…
	
		Reference in a new issue