[LLM] apply allreduce and bias to training in LowBitLinear (#9395)

This commit is contained in:
Heyang Sun 2023-11-09 14:35:54 +08:00 committed by GitHub
parent 40cead6b5b
commit df8e4d7889

View file

@ -463,7 +463,7 @@ class LowBitLinear(nn.Linear):
if self.training and x.requires_grad:
result = MatMulLowBitCPU.apply(x, self.weight)
else:
# Step 1. convert if necessary, and compute a linear result
# convert if necessary, and compute a linear result
if IS_SERVER and (not IS_SPR) and \
self.qtype == SYM_INT4 and x_2d.shape[0] >= TORCH_LINEAR_THRESHOLD:
x0_fp32 = ggml_int4_convert_fp32(x0, self.weight_shape, self.weight_length)
@ -473,13 +473,13 @@ class LowBitLinear(nn.Linear):
result = ggml_matmul_src1_x_src0_t(x0, x_2d, self.weight_shape, self.qtype)
new_shape = x_shape[:-1] + (self.out_len,)
result = result.view(new_shape)
# Step 2. allreduce to combine partial results and add bias if necessary
if self.mp_group is not None:
# deepspeed distibuted mode
from deepspeed import comm as dist
dist.inference_all_reduce(result, group=self.mp_group)
if self.bias is not None:
result += self.bias
# allreduce to combine partial results and add bias if necessary
if self.mp_group is not None:
# deepspeed distibuted mode
from deepspeed import comm as dist
dist.inference_all_reduce(result, group=self.mp_group)
if self.bias is not None:
result += self.bias
return result