Gemma optimization: rms_norm, kv_cache, fused_rope, fused_rope+qkv (#10212)
* gemma optimization * update * update * fix style * meet code review
This commit is contained in:
parent
63681af97e
commit
30795bdfbc
3 changed files with 266 additions and 0 deletions
|
|
@ -1062,6 +1062,18 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
convert_forward(model,
|
||||
module.MistralMLP,
|
||||
llama_mlp_forward)
|
||||
elif model.config.model_type == "gemma":
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.gemma import gemma_attention_forward
|
||||
from bigdl.llm.transformers.models.gemma import gemma_rms_norm_forward
|
||||
convert_forward(model,
|
||||
module.GemmaAttention,
|
||||
gemma_attention_forward,
|
||||
)
|
||||
convert_forward(model,
|
||||
module.GemmaRMSNorm,
|
||||
gemma_rms_norm_forward)
|
||||
elif model.config.model_type == "Yi":
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
|
|
|
|||
250
python/llm/src/bigdl/llm/transformers/models/gemma.py
Normal file
250
python/llm/src/bigdl/llm/transformers/models/gemma.py
Normal file
|
|
@ -0,0 +1,250 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gemma/modeling_gemma.py
|
||||
# coding=utf-8
|
||||
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
|
||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_36, rotate_half
|
||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
||||
cos = cos.unsqueeze(unsqueeze_dim)
|
||||
sin = sin.unsqueeze(unsqueeze_dim)
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""
|
||||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
||||
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim)
|
||||
to (batch, num_attention_heads, seqlen, head_dim)
|
||||
"""
|
||||
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||||
if n_rep == 1:
|
||||
return hidden_states
|
||||
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
|
||||
n_rep, slen, head_dim)
|
||||
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||||
|
||||
|
||||
def should_use_fuse_rope(self, hidden_states, position_ids):
|
||||
use_fuse_rope = hidden_states.device.type == "xpu"
|
||||
use_fuse_rope = use_fuse_rope and not (self.training and hidden_states.requires_grad)
|
||||
use_fuse_rope = use_fuse_rope and position_ids is not None
|
||||
return use_fuse_rope
|
||||
|
||||
|
||||
def use_decoding_fast_path(q_type, use_fuse_rope, enough_kv_room, bs):
|
||||
return q_type in [SYM_INT4, FP8E5] and \
|
||||
use_fuse_rope and enough_kv_room and bs == 1
|
||||
|
||||
|
||||
def gemma_rms_norm_forward(self, hidden_states):
|
||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
||||
import linear_q4_0
|
||||
result = linear_q4_0.fused_rms_norm(hidden_states,
|
||||
[self.weight.size(0)],
|
||||
self.weight + 1,
|
||||
None,
|
||||
self.eps)
|
||||
# if nelement == 0, means fused norm failed, go back to python implement.
|
||||
if result.nelement != 0:
|
||||
# We should copy this result to avoid <unk> by unknown reason on Arc GPUs.
|
||||
result = result.clone()
|
||||
return result
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
||||
return (1 + self.weight) * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
def gemma_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor]=None,
|
||||
position_ids: Optional[torch.LongTensor]=None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]]=None,
|
||||
output_attentions: bool=False,
|
||||
use_cache: bool=False,
|
||||
cache_position: Optional[torch.Tensor]=None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, hidden_size = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
# for flash attention
|
||||
original_dtype = hidden_states.dtype
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj.qtype,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len)
|
||||
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
kv_seq_len += 1
|
||||
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
past_key_value.seen_tokens = kv_seq_len
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(False,
|
||||
"The cache structure has changed since version v4.36. "
|
||||
f"If you are using {self.__class__.__name__} for "
|
||||
"auto-regressive decodingwith k/v caching, please make sure "
|
||||
"to initialize the attention class with a layer index.")
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
if use_fuse_rope:
|
||||
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
||||
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
|
||||
sin, cos, "gemma")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, None)
|
||||
|
||||
if past_key_value is not None:
|
||||
# update the number of seen tokens
|
||||
if self.layer_idx == 0:
|
||||
past_key_value.seen_tokens += key_states.shape[-2]
|
||||
|
||||
# reuse k, v, self_attention
|
||||
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
past_key_value.key_cache.append(key_states)
|
||||
past_key_value.value_cache.append(value_states)
|
||||
else:
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
if not enough_kv_room:
|
||||
# allocate new
|
||||
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
|
||||
new_c_k[:] = cache_k
|
||||
new_c_v[:] = cache_v
|
||||
cache_k = new_c_k
|
||||
cache_v = new_c_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k, cache_v,
|
||||
key_states, value_states)
|
||||
|
||||
# update past_key_value
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
if cache_position is not None:
|
||||
causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
|
||||
else:
|
||||
causal_mask = attention_mask
|
||||
attn_weights = attn_weights + causal_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||
training=self.training)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
||||
attn_output = attn_output.view(bsz, q_len, -1)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
|
@ -207,6 +207,10 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i
|
|||
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
||||
elif model_family in ["gemma"]:
|
||||
cos = cos.unsqueeze(1)
|
||||
sin = sin.unsqueeze(1)
|
||||
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
||||
else:
|
||||
invalidInputError(False,
|
||||
f"{model_family} is not supported.")
|
||||
|
|
|
|||
Loading…
Reference in a new issue