parent
84d5f40936
commit
63681af97e
5 changed files with 262 additions and 9 deletions
|
|
@ -19,7 +19,12 @@ pip install einops # additional package required for falcon-7b-instruct and falc
|
|||
|
||||
### 2. (Optional) Download Model and Replace File
|
||||
If you select the Falcon models ([tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) or [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct)), please note that their code (`modelling_RW.py`) does not support KV cache at the moment. To address issue, we have provided two updated files ([falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py) and [falcon-40b-instruct/modelling_RW.py](./falcon-40b-instruct/modelling_RW.py)), which can be used to achieve the best performance using BigDL-LLM INT4 optimizations with KV cache support.
|
||||
|
||||
After transformers 4.36, only transformer models are supported since remote code diverges from transformer model code, make sure set `trust_remote_code=False`.
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=False)
|
||||
```
|
||||
|
||||
#### 2.1 Download Model
|
||||
You could use the following code to download [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) or [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) with a specific snapshot id. Please note that the `modelling_RW.py` files that we provide are based on these specific commits.
|
||||
|
|
|
|||
|
|
@ -43,11 +43,11 @@ if __name__ == '__main__':
|
|||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=True)
|
||||
trust_remote_code=False)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
trust_remote_code=False)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
|
|
|
|||
|
|
@ -30,7 +30,12 @@ pip install einops # additional package required for falcon-7b-instruct to condu
|
|||
|
||||
### 2. (Optional) Download Model and Replace File
|
||||
If you select the Falcon model ([tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)), please note that their code (`modelling_RW.py`) does not support KV cache at the moment. To address issue, we have provided updated file ([falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py)), which can be used to achieve the best performance using BigDL-LLM INT4 optimizations with KV cache support.
|
||||
|
||||
After transformers 4.36, only transformer models are supported since remote code diverges from transformer model code, make sure set `trust_remote_code=False`.
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=False)
|
||||
```
|
||||
|
||||
#### 2.1 Download Model
|
||||
You could use the following code to download [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) with a specific snapshot id. Please note that the `modelling_RW.py` files that we provide are based on these specific commits.
|
||||
|
|
|
|||
|
|
@ -818,11 +818,20 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
elif "FalconForCausalLM" in model.config.architectures:
|
||||
if model.config.hidden_size != 4544:
|
||||
# falcon-180b and new falcon-40b
|
||||
from bigdl.llm.transformers.models.falcon import falcon_attention_forward
|
||||
convert_forward(model,
|
||||
module.FalconAttention,
|
||||
falcon_attention_forward
|
||||
)
|
||||
if version.parse(trans_version) >= version.parse("4.36.0"):
|
||||
# transformers version >= 4.36.0
|
||||
from bigdl.llm.transformers.models.falcon import falcon_attention_forward_4_36
|
||||
convert_forward(model,
|
||||
module.FalconAttention,
|
||||
falcon_attention_forward_4_36
|
||||
)
|
||||
else:
|
||||
from bigdl.llm.transformers.models.falcon import falcon_attention_forward
|
||||
convert_forward(model,
|
||||
module.FalconAttention,
|
||||
falcon_attention_forward
|
||||
)
|
||||
|
||||
elif model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
|
||||
# baichuan2
|
||||
if model.config.hidden_size == 4096:
|
||||
|
|
|
|||
|
|
@ -39,11 +39,50 @@ import torch
|
|||
from torch.nn import functional as F
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
import warnings
|
||||
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
|
||||
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2:]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
||||
"""Applies Rotary Position Embedding to the query and key tensors.
|
||||
Args:
|
||||
q (`torch.Tensor`): The query tensor.
|
||||
k (`torch.Tensor`): The key tensor.
|
||||
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
||||
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
||||
position_ids (`torch.Tensor`):
|
||||
The position indices of the tokens corresponding to the query and key tensors. For
|
||||
example, this can be used to pass offsetted position ids when working with a KV-cache.
|
||||
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
||||
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze
|
||||
cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the
|
||||
dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids]
|
||||
have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape
|
||||
[batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
||||
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k.
|
||||
Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim],
|
||||
then set unsqueeze_dim=2.
|
||||
Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary
|
||||
Position Embedding.
|
||||
"""
|
||||
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
||||
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
def rw_attention_forward_7b(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
|
|
@ -592,3 +631,198 @@ def falcon_attention_forward(
|
|||
return output_tensor, present, attention_probs
|
||||
else:
|
||||
return output_tensor, present
|
||||
|
||||
|
||||
def falcon_attention_forward_4_36(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
alibi: Optional[torch.Tensor],
|
||||
attention_mask: torch.Tensor,
|
||||
position_ids: Optional[torch.LongTensor]=None,
|
||||
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
|
||||
head_mask: Optional[torch.Tensor]=None,
|
||||
use_cache: bool=False,
|
||||
output_attentions: bool=False,
|
||||
**kwargs,
|
||||
):
|
||||
""" based on transformers==4.36.0
|
||||
https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/falcon/modeling_falcon.py
|
||||
"""
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. \
|
||||
Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
||||
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
||||
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
||||
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
||||
|
||||
batch_size, query_length, _, _ = query_layer.shape
|
||||
|
||||
query_layer = query_layer.transpose(1, 2).reshape(
|
||||
batch_size, self.num_heads, query_length, self.head_dim)
|
||||
key_layer = key_layer.transpose(1, 2).reshape(
|
||||
batch_size, num_kv_heads, query_length, self.head_dim)
|
||||
value_layer = value_layer.transpose(1, 2).reshape(
|
||||
batch_size, num_kv_heads, query_length, self.head_dim)
|
||||
|
||||
kv_seq_len = key_layer.shape[-2]
|
||||
device = hidden_states.device
|
||||
|
||||
if layer_past is not None:
|
||||
kv_seq_len += layer_past[0].shape[-2]
|
||||
|
||||
if alibi is None:
|
||||
cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
|
||||
query_layer, key_layer = apply_rotary_pos_emb(
|
||||
query_layer, key_layer, cos, sin, position_ids)
|
||||
|
||||
if layer_past is not None:
|
||||
# reuse k, v, self_attention
|
||||
cache_k = layer_past[0].view(batch_size, self.num_heads, -1, self.head_dim)
|
||||
cache_v = layer_past[1].view(batch_size, self.num_heads, -1, self.head_dim)
|
||||
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||
# allocate new
|
||||
new_cache_k, new_cache_v = extend_kv_cache(
|
||||
batch_size,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device
|
||||
)
|
||||
new_cache_k[:] = cache_k
|
||||
new_cache_v[:] = cache_v
|
||||
cache_k = new_cache_k
|
||||
cache_v = new_cache_v
|
||||
|
||||
key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
|
||||
|
||||
elif use_cache:
|
||||
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_key_states, new_value_states = init_kv_cache(
|
||||
batch_size,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
kv_seq_len,
|
||||
max_cache_length,
|
||||
dtype=key_layer.dtype,
|
||||
device=device
|
||||
)
|
||||
new_key_states[:] = key_layer
|
||||
new_value_states[:] = value_layer
|
||||
key_layer = new_key_states
|
||||
value_layer = new_value_states
|
||||
|
||||
query_layer = query_layer.view(batch_size, self.num_heads, -1, self.head_dim)
|
||||
key_layer = key_layer.view(batch_size, self.num_heads, -1, self.head_dim)
|
||||
value_layer = value_layer.view(batch_size, self.num_heads, -1, self.head_dim)
|
||||
|
||||
kv_length = key_layer.shape[-2]
|
||||
if use_cache:
|
||||
present = (key_layer, value_layer)
|
||||
else:
|
||||
present = None
|
||||
|
||||
# SDPA with memory-efficient backend is currently (torch==2.1.2)
|
||||
# bugged with non-contiguous inputs with custom attn_mask,
|
||||
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
||||
if query_layer.device.type == "cuda" and attention_mask is not None:
|
||||
query_layer = query_layer.contiguous()
|
||||
key_layer = key_layer.contiguous()
|
||||
value_layer = value_layer.contiguous()
|
||||
|
||||
if alibi is None:
|
||||
if self._use_sdpa and not output_attentions:
|
||||
attn_output = F.scaled_dot_product_attention(
|
||||
query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attention_mask,
|
||||
0.0,
|
||||
# The query_length > 1 is necessary to match with
|
||||
# AttentionMaskConverter.to_causal_4d that does not create a causal mask in case
|
||||
# query_length == 1.
|
||||
is_causal=self.is_causal and attention_mask is None and query_length > 1,
|
||||
)
|
||||
attention_scores = None
|
||||
else:
|
||||
attention_scores = query_layer @ key_layer.transpose(-1, -2)
|
||||
attention_scores /= math.sqrt(self.head_dim)
|
||||
|
||||
attention_scores = F.softmax(
|
||||
attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype)
|
||||
# It is unclear why neither dropout nor head_mask is applied here
|
||||
# (while it is with alibi).
|
||||
attn_output = attention_scores @ value_layer
|
||||
|
||||
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
|
||||
attn_output = attn_output.permute(0, 2, 1, 3)
|
||||
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
||||
|
||||
attn_output = self.dense(attn_output)
|
||||
|
||||
if output_attentions:
|
||||
return attn_output, present, attention_scores
|
||||
else:
|
||||
return attn_output, present
|
||||
|
||||
else:
|
||||
if self._use_sdpa and not output_attentions and head_mask is None:
|
||||
attn_output = F.scaled_dot_product_attention(
|
||||
query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attn_mask=attention_mask,
|
||||
dropout_p=self.attention_dropout.p if self.training else 0.0,
|
||||
is_causal=self.is_causal and attention_mask is None and query_length > 1,
|
||||
)
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(
|
||||
batch_size, query_length, self.num_heads * self.head_dim)
|
||||
|
||||
attn_output = self.dense(attn_output)
|
||||
else:
|
||||
matmul_result = query_layer @ key_layer.transpose(-1, -2)
|
||||
|
||||
# change view to [batch_size, num_heads, q_length, kv_length]
|
||||
attention_scores = matmul_result.view(
|
||||
batch_size, self.num_heads, query_length, kv_length)
|
||||
|
||||
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype -
|
||||
# [batch_size, num_heads, q_length, kv_length]
|
||||
input_dtype = attention_scores.dtype
|
||||
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a
|
||||
# minimum value of `-3.4e+38`
|
||||
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
||||
attention_scores = attention_scores.to(torch.float32)
|
||||
|
||||
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
|
||||
attention_logits *= self.inv_norm_factor
|
||||
attention_probs = F.softmax(
|
||||
attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype)
|
||||
# [batch_size, num_heads, q_length, kv_length]
|
||||
attention_probs = self.attention_dropout(attention_probs)
|
||||
|
||||
if head_mask is not None:
|
||||
attention_probs = attention_probs * head_mask
|
||||
|
||||
# change view [batch_size, num_heads, q_length, kv_length]
|
||||
attention_probs_reshaped = attention_probs.view(
|
||||
batch_size, self.num_heads, query_length, kv_length)
|
||||
|
||||
# matmul: [batch_size * num_heads, q_length, head_dim]
|
||||
attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1)
|
||||
|
||||
# change view [batch_size, q_length, num_heads * head_dim]
|
||||
attn_output = self._merge_heads(attn_output)
|
||||
|
||||
attn_output = self.dense(attn_output)
|
||||
|
||||
if output_attentions:
|
||||
return attn_output, present, attention_probs
|
||||
else:
|
||||
return attn_output, present
|
||||
|
|
|
|||
Loading…
Reference in a new issue