Update AutoXGBoost and AutoEstimator Quickstart (#3327)
* change document * update quick start notebook * update autoestimator pytorch quickstart * update doc * update notebook * change logo * update install
This commit is contained in:
		
							parent
							
								
									d92e68dd78
								
							
						
					
					
						commit
						26c087d493
					
				
					 2 changed files with 7 additions and 13 deletions
				
			
		| 
						 | 
					@ -13,7 +13,7 @@
 | 
				
			||||||
[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/distributed-tuning.html#install) for more details.
 | 
					[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/distributed-tuning.html#install) for more details.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
conda create -n bigdl-orca-automl python=3.7 # zoo is conda environment name, you can use any name you like.
 | 
					conda create -n bigdl-orca-automl python=3.7 # bigdl-orca-automl is conda environment name, you can use any name you like.
 | 
				
			||||||
conda activate bigdl-orca-automl
 | 
					conda activate bigdl-orca-automl
 | 
				
			||||||
pip install bigdl-orca[automl]
 | 
					pip install bigdl-orca[automl]
 | 
				
			||||||
pip install torch==1.8.1 torchvision==0.9.1
 | 
					pip install torch==1.8.1 torchvision==0.9.1
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -2,7 +2,7 @@
 | 
				
			||||||
 | 
					
 | 
				
			||||||
---
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/analytics-zoo/blob/master/docs/docs/colab-notebook/orca/quickstart/autoxgboost_regressor_sklearn_boston.ipynb)  [View source on GitHub](https://github.com/intel-analytics/analytics-zoo/blob/master/docs/docs/colab-notebook/orca/quickstart/autoxgboost_regressor_sklearn_boston.ipynb)
 | 
					[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/branch-2.0/python/orca/colab-notebook/quickstart/autoxgboost_regressor_sklearn_boston.ipynb)  [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/orca/colab-notebook/quickstart/autoxgboost_regressor_sklearn_boston.ipynb)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
---
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -11,18 +11,12 @@
 | 
				
			||||||
Orca AutoXGBoost enables distributed automated hyper-parameter tuning for XGBoost, which includes `AutoXGBRegressor` and `AutoXGBClassifier` for sklearn`XGBRegressor` and `XGBClassifier` respectively. See more about [xgboost scikit-learn API](https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn).
 | 
					Orca AutoXGBoost enables distributed automated hyper-parameter tuning for XGBoost, which includes `AutoXGBRegressor` and `AutoXGBClassifier` for sklearn`XGBRegressor` and `XGBClassifier` respectively. See more about [xgboost scikit-learn API](https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn).
 | 
				
			||||||
### **Step 0: Prepare Environment**
 | 
					### **Step 0: Prepare Environment**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](../../UserGuide/python.md) for more details.
 | 
					[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/distributed-tuning.html#install) for more details.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```bash
 | 
					 | 
				
			||||||
conda create -n zoo python=3.7 # zoo is conda environment name, you can use any name you like.
 | 
					 | 
				
			||||||
conda activate zoo
 | 
					 | 
				
			||||||
pip install analytics-zoo[ray]
 | 
					 | 
				
			||||||
pip install torch==1.7.1 torchvision==0.8.2
 | 
					 | 
				
			||||||
```
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
### **Step 1: Init Orca Context**
 | 
					### **Step 1: Init Orca Context**
 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
from zoo.orca import init_orca_context, stop_orca_context
 | 
					from bigdl.orca import init_orca_context, stop_orca_context
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if cluster_mode == "local":
 | 
					if cluster_mode == "local":
 | 
				
			||||||
    init_orca_context(cores=6, memory="2g", init_ray_on_spark=True) # run in local mode
 | 
					    init_orca_context(cores=6, memory="2g", init_ray_on_spark=True) # run in local mode
 | 
				
			||||||
| 
						 | 
					@ -42,10 +36,10 @@ This is the only place where you need to specify local or distributed mode. View
 | 
				
			||||||
 | 
					
 | 
				
			||||||
You should define a dictionary as your hyper-parameter search space.
 | 
					You should define a dictionary as your hyper-parameter search space.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
The keys are hyper-parameter names you want to search for `XGBRegressor`, and you can specify how you want to sample each hyper-parameter in the values of the search space. See [automl.hp](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details.
 | 
					The keys are hyper-parameter names you want to search for `XGBRegressor`, and you can specify how you want to sample each hyper-parameter in the values of the search space. See [automl.hp](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
from zoo.orca.automl import hp
 | 
					from bigdl.orca.automl import hp
 | 
				
			||||||
 | 
					
 | 
				
			||||||
search_space = {
 | 
					search_space = {
 | 
				
			||||||
    "n_estimators": hp.grid_search([50, 100, 200]),
 | 
					    "n_estimators": hp.grid_search([50, 100, 200]),
 | 
				
			||||||
| 
						 | 
					@ -58,7 +52,7 @@ search_space = {
 | 
				
			||||||
First create an `AutoXGBRegressor`.
 | 
					First create an `AutoXGBRegressor`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
from zoo.orca.automl.xgboost import AutoXGBRegressor
 | 
					from bigdl.orca.automl.xgboost import AutoXGBRegressor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
auto_xgb_reg = AutoXGBRegressor(cpus_per_trial=2, 
 | 
					auto_xgb_reg = AutoXGBRegressor(cpus_per_trial=2, 
 | 
				
			||||||
                                name="auto_xgb_classifier",
 | 
					                                name="auto_xgb_classifier",
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue