diff --git a/docs/readthedocs/source/doc/Orca/QuickStart/orca-autoestimator-pytorch-quickstart.md b/docs/readthedocs/source/doc/Orca/QuickStart/orca-autoestimator-pytorch-quickstart.md index 1e6401dd..96993e42 100644 --- a/docs/readthedocs/source/doc/Orca/QuickStart/orca-autoestimator-pytorch-quickstart.md +++ b/docs/readthedocs/source/doc/Orca/QuickStart/orca-autoestimator-pytorch-quickstart.md @@ -13,7 +13,7 @@ [Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/distributed-tuning.html#install) for more details. ```bash -conda create -n bigdl-orca-automl python=3.7 # zoo is conda environment name, you can use any name you like. +conda create -n bigdl-orca-automl python=3.7 # bigdl-orca-automl is conda environment name, you can use any name you like. conda activate bigdl-orca-automl pip install bigdl-orca[automl] pip install torch==1.8.1 torchvision==0.9.1 diff --git a/docs/readthedocs/source/doc/Orca/QuickStart/orca-autoxgboost-quickstart.md b/docs/readthedocs/source/doc/Orca/QuickStart/orca-autoxgboost-quickstart.md index 8006b35d..7a74ce4d 100644 --- a/docs/readthedocs/source/doc/Orca/QuickStart/orca-autoxgboost-quickstart.md +++ b/docs/readthedocs/source/doc/Orca/QuickStart/orca-autoxgboost-quickstart.md @@ -2,7 +2,7 @@ --- -![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/analytics-zoo/blob/master/docs/docs/colab-notebook/orca/quickstart/autoxgboost_regressor_sklearn_boston.ipynb)  ![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/analytics-zoo/blob/master/docs/docs/colab-notebook/orca/quickstart/autoxgboost_regressor_sklearn_boston.ipynb) +![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/branch-2.0/python/orca/colab-notebook/quickstart/autoxgboost_regressor_sklearn_boston.ipynb)  ![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/orca/colab-notebook/quickstart/autoxgboost_regressor_sklearn_boston.ipynb) --- @@ -11,18 +11,12 @@ Orca AutoXGBoost enables distributed automated hyper-parameter tuning for XGBoost, which includes `AutoXGBRegressor` and `AutoXGBClassifier` for sklearn`XGBRegressor` and `XGBClassifier` respectively. See more about [xgboost scikit-learn API](https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn). ### **Step 0: Prepare Environment** -[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](../../UserGuide/python.md) for more details. +[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/distributed-tuning.html#install) for more details. -```bash -conda create -n zoo python=3.7 # zoo is conda environment name, you can use any name you like. -conda activate zoo -pip install analytics-zoo[ray] -pip install torch==1.7.1 torchvision==0.8.2 -``` ### **Step 1: Init Orca Context** ```python -from zoo.orca import init_orca_context, stop_orca_context +from bigdl.orca import init_orca_context, stop_orca_context if cluster_mode == "local": init_orca_context(cores=6, memory="2g", init_ray_on_spark=True) # run in local mode @@ -42,10 +36,10 @@ This is the only place where you need to specify local or distributed mode. View You should define a dictionary as your hyper-parameter search space. -The keys are hyper-parameter names you want to search for `XGBRegressor`, and you can specify how you want to sample each hyper-parameter in the values of the search space. See [automl.hp](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details. +The keys are hyper-parameter names you want to search for `XGBRegressor`, and you can specify how you want to sample each hyper-parameter in the values of the search space. See [automl.hp](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details. ```python -from zoo.orca.automl import hp +from bigdl.orca.automl import hp search_space = { "n_estimators": hp.grid_search([50, 100, 200]), @@ -58,7 +52,7 @@ search_space = { First create an `AutoXGBRegressor`. ```python -from zoo.orca.automl.xgboost import AutoXGBRegressor +from bigdl.orca.automl.xgboost import AutoXGBRegressor auto_xgb_reg = AutoXGBRegressor(cpus_per_trial=2, name="auto_xgb_classifier",