diff --git a/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/README.md b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/README.md
index 4f84662e..8edc2fef 100644
--- a/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/README.md
+++ b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/README.md
@@ -23,7 +23,7 @@ Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-w
 Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**.
 Right click and select **Update Driver**. And then manually select the folder unzipped from the driver.
 
-## Example: Predict Tokens using `generate()` API
+## Example 1: Predict Tokens using `generate()` API
 In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel NPUs.
 ### 1. Install
 #### 1.1 Installation on Windows
@@ -81,3 +81,62 @@ Inference time: xxxx s
 --------------------------------------------------------------------------------
 done
 ```
+
+## Example 2: Predict Tokens using `generate()` API using multi processes
+In the example [llama2.py](./llama2.py), we show an experimental support for a Llama2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimization and fused decoderlayer optimization on Intel NPUs.
+### 1. Install
+#### 1.1 Installation on Windows
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.10
+conda activate llm
+
+# install ipex-llm with 'all' option
+pip install --pre --upgrade ipex-llm[all]
+pip install --pre --upgrade bigdl-core-npu
+
+pip install transformers==4.40
+```
+
+### 2. Runtime Configurations
+For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
+#### 2.1 Configurations for Windows
+
+> [!NOTE]
+> For optimal performance, we recommend running code in `conhost` rather than Windows Terminal:
+> - Press Win+R and input `conhost`, then press Enter to launch `conhost`.
+> - Run following command to use conda in `conhost`. Replace `` with your conda install location.
+> ```
+> call \Scripts\activate
+> ```
+
+**Following envrionment variables are required**:
+
+```cmd
+set BIGDL_USE_NPU=1
+```
+
+### 3. Running examples
+
+```
+torchrun --standalone --nnodes=1 --nproc-per-node=2  llama2.py
+```
+
+Arguments info:
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (i.e. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
+- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun'`.
+- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
+
+#### Sample Output
+#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
+
+```log
+First token cost: xxxx s, rest tokens cost average: xxxx s
+Inference time: xxxx s
+-------------------- Prompt --------------------
+Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun
+-------------------- Output --------------------
+ Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun and exciting experiences.
+
+One day, she decided to go on a journey to find a magical land that was said to be full of wonders
+```
diff --git a/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/llama2.py b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/llama2.py
new file mode 100644
index 00000000..55749fcf
--- /dev/null
+++ b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/llama2.py
@@ -0,0 +1,846 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import os
+os.environ["OMP_NUM_THREADS"] = "4"
+os.environ["IPEX_LLM_LAST_LM_HEAD"] = "1"
+import torch
+import time
+import argparse
+
+from ipex_llm.transformers.npu_model import AutoModelForCausalLM
+from transformers import AutoTokenizer
+from intel_npu_acceleration_library.backend.factory import NNFactory
+from typing import Optional, Sequence, List, Union, Any, Tuple
+import numpy as np
+import math
+from intel_npu_acceleration_library.backend.runtime import set_contiguous, record_function
+from intel_npu_acceleration_library.backend.runtime import adapt_output_tensor, _model_cache
+from collections import deque
+from transformers.cache_utils import Cache
+from intel_npu_acceleration_library.backend.bindings import lib as backend_lib
+import ctypes
+from ipex_llm.utils.common import invalidInputError
+from typing import Optional, List, Generator
+import uuid
+from functools import partial
+import torch.nn.functional as F
+import torch.nn.parallel
+import torch.distributed as dist
+
+from transformers.utils import logging
+logger = logging.get_logger(__name__)
+
+
+@torch.no_grad()
+def run_model(
+    x: Union[torch.Tensor, List[torch.Tensor]],
+    weights: List[torch.Tensor],
+    backend_cls: Any,
+    op_id: str,
+    replica: int = 1,
+) -> torch.Tensor:
+    """Run a factory operation. Depending on the datatype of the weights it runs a float or quantized operation.
+
+    Args:
+        x (Union[torch.Tensor, List[torch.Tensor]]): Activation tensor(s). Its dtype must be torch.float16
+        weights (torch.Tensor): Weights tensor.  Its dtype can be torch.float16 or torch.int8
+        backend_cls (Any): Backend class to run
+        op_id (Optional[str], optional): Operation ID. Defaults to None.
+
+    Returns:
+        torch.Tensor: result
+    """
+    global _model_cache
+    import time
+    t0 = time.perf_counter()
+
+    # Use or not op_id depending on the class used
+    op_kwargs = {"op_id": op_id} if op_id else {}
+
+    if not isinstance(x, (list, tuple)):
+        x = [x]
+
+    # Reshape input
+    input_dtype = x[0].dtype
+    x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
+    op_args = []
+    op_args_flatten = []
+    for w in weights:
+        if isinstance(w, tuple):  # from QuantizedLinear
+            op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
+            op_args_flatten.append(op_args[-1][0])
+            op_args_flatten.append(op_args[-1][1])
+        else:
+            op_args.append(set_contiguous(w).to(torch.float16).numpy())
+            op_args_flatten.append(op_args[-1])
+
+    shape_dtype_signature = "_".join(
+        ["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
+    )
+    key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
+    models = _model_cache.get(key, None)
+
+    input_shapes = [elem.shape for elem in x_np]
+    if models is None:
+        _model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
+    elif len(models) < 1:
+        _model_cache[key].append(backend_cls(*input_shapes))
+    else:
+        _model_cache[key].rotate(1)
+
+    # Get the model
+    model = _model_cache[key][0]
+
+    with record_function(f"npu_factory_mul_{key}"):
+        ret = model.run(x_np, *op_args, **op_kwargs)
+
+    if isinstance(ret, list):
+        results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
+    else:
+        results = adapt_output_tensor(ret, ret.shape, input_dtype)
+
+    return results
+
+
+class LowBitLlamaDecoderlayer(NNFactory):
+    def __init__(
+        self,
+        hidden_shape: Sequence[int],
+        attenion_mask_shape=None,
+        position_id_shape=None,
+        past_key_shape=None,
+        past_value_shape=None,
+        input_layernorm_shape=None,
+        post_layernorm_shape=None,
+        *,
+        num_heads: int,
+        num_key_value_heads: int,
+        cached_cos,
+        cached_sin,
+        mode: str = "prefill",
+        dtype: np.dtype = np.int8,
+        max_seq_len: int = 128,
+        profile: bool = False,
+        device: str = "NPU",
+        rms_norm_eps,
+        intermediate_size,
+        **additional_args
+    ):
+        super().__init__(profile, device)
+        self.max_seq_len = max_seq_len
+        self.intermediate_size = intermediate_size
+        eps = self.constant(rms_norm_eps)
+        
+        self.batch_size, self.seq_len, self.hidden_size = hidden_shape
+        
+        if mode == "decode":
+            invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
+        self.num_heads = num_heads
+        self.num_key_value_heads = num_key_value_heads
+        
+        self.head_dim = self.hidden_size // self.num_heads
+        
+        # define input, the order self.parameter matters
+        input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
+
+        # Self Attention
+        if mode == "decode":
+            attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
+        else:
+            attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
+        
+        position_ids = self.parameter((self.batch_size, self.seq_len))
+
+        input_layernorm_weight = self.parameter((1, self.hidden_size,))
+        post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
+
+        if mode == "decode":
+            past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
+            past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
+
+        residual = input
+        
+        input_2d = self.reshape(input, (self.batch_size * self.seq_len, self.hidden_size))
+
+        # input_layernorm forward
+        input_2d = self.convert_to_fp32(input_2d)
+        variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
+        input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
+        input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
+        input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
+        input_2d = self.convert_to_fp16(input_2d)
+
+        query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
+        key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
+        value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
+
+        cos = self.constant(cached_cos)
+        cos = self.unsqueeze(cos, axis=0)
+
+        sin = self.constant(cached_sin)
+        sin = self.unsqueeze(sin, axis=0)
+
+        query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
+        key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
+        value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
+        
+        query_states = self.transpose(query_states, [0, 2, 1, 3])
+        key_states = self.transpose(key_states, [0, 2, 1, 3])
+        value_states = self.transpose(value_states, [0, 2, 1, 3])
+        
+        query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
+        new_key_states = key_states
+        new_value_states = value_states
+
+        invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
+        
+        if mode == "decode":
+            key_states = self.concat(past_key, key_states, axis=-2)
+            value_states = self.concat(past_value, value_states, axis=-2)
+
+        attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
+        attn_weight = self.eltwise_add(attn_weight, attention_mask)
+        attn_weight = self.convert_to_fp32(attn_weight)
+        attn_weight = self.softmax(attn_weight, -1)
+        attn_weight = self.convert_to_fp16(attn_weight)
+        attn_output = self.matmul(attn_weight, value_states, False, False)
+
+        attn_output = self.transpose(attn_output, [0, 2, 1, 3])
+        attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
+
+        attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=dtype)
+
+        hidden_states = self.eltwise_add(residual, attn_output)
+
+        # Fully Connected
+        residual = hidden_states
+        hidden_states = self.convert_to_fp32(hidden_states)
+        variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
+        hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
+        post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
+        hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
+        hidden_states = self.convert_to_fp16(hidden_states)
+
+        # mlp
+        mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
+                          bias=False, wt_dtype=dtype)
+        mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
+                          bias=False, wt_dtype=dtype)  # type: ignore[attr-defined]
+        mm1 = self.eltwise_mul(self.swish(mm1), mm2)  # type: ignore[attr-defined]
+
+        hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=dtype)
+        
+        hidden_states = self.eltwise_add(residual, hidden_states)
+        hidden_states = self.convert_to_fp16(hidden_states)
+        
+        # hacking to add key, value to outputs
+        new_key_states = self.convert_to_fp16(new_key_states)
+        new_value_states = self.convert_to_fp16(new_value_states)
+
+        self.compile()
+    
+    def rotate_half(self, x):
+        x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
+        x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
+        return self.concat(self.negative(x2), x1, axis=-1)
+    
+    def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
+        position_ids = self.squeeze(position_ids)
+        cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
+        sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
+        cos = self.unsqueeze(cos, [1])
+        sin = self.unsqueeze(sin, [1])
+        
+        q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
+        k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
+        
+        return q_embed, k_embed
+
+
+class LowBitLlamaMultiDecoderlayer(NNFactory):
+    def __init__(
+        self,
+        hidden_shape: Sequence[int],
+        *shapes,
+        num_heads: int,
+        num_key_value_heads: int,
+        num_layers: int,
+        cached_cos,
+        cached_sin,
+        input_layernorm_weights,
+        post_attn_layernorm_weights,
+        mode: str = "prefill",
+        dtype: np.dtype = np.int8,
+        max_seq_len: int = 128,
+        profile: bool = False,
+        device: str = "NPU",
+        rms_norm_eps,
+        intermediate_size,
+        **additional_args
+    ):
+        super().__init__(profile, device)
+        self.max_seq_len = max_seq_len
+        self.intermediate_size = intermediate_size
+        self.dtype = dtype
+        self.cached_cos = cached_cos
+        self.cached_sin = cached_sin
+        self.batch_size, self.seq_len, self.hidden_size = hidden_shape
+        self.mode = mode
+        self.rms_norm_eps = rms_norm_eps
+
+        cos = self.constant(self.cached_cos)
+        self.cos = self.unsqueeze(cos, axis=0)
+
+        sin = self.constant(self.cached_sin)
+        self.sin = self.unsqueeze(sin, axis=0)
+        
+        if mode == "decode":
+            invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
+        self.num_heads = num_heads
+        self.num_key_value_heads = num_key_value_heads
+        
+        self.head_dim = self.hidden_size // self.num_heads
+        
+        # define input, the order self.parameter matters
+        input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
+
+        # Self Attention
+        if mode == "decode":
+            attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
+        else:
+            attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
+
+        position_ids = self.parameter((self.batch_size, self.seq_len))
+        past_keys = []
+        past_values = []
+        if mode == "decode":
+            for i in range(num_layers):
+                past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
+                past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
+                past_keys.append(past_key)
+                past_values.append(past_value)
+        else:
+            past_key = None
+            past_value = None
+
+        # input_layernorm_weight = self.parameter((1, self.hidden_size,))
+        # post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
+        hidden_states = input
+        
+        curr_key_values = []
+        for i in range(num_layers):
+            hidden_states, new_key_states, new_value_states = self.build_decoder(hidden_states=hidden_states,
+                                                                                 attention_mask=attention_mask,
+                                                                                 position_ids=position_ids,
+                                                                                 input_layernorm_weight=input_layernorm_weights[i],
+                                                                                 post_attention_layernorm_weight=post_attn_layernorm_weights[i],
+                                                                                 past_key=past_keys[i],
+                                                                                 past_value=past_values[i],)
+            curr_key_values.append((new_key_states, new_value_states))
+
+        # define outputs
+        hidden_states = self.convert_to_fp16(hidden_states)
+        
+        for i in range(num_layers):
+            new_key_states = self.convert_to_fp16(curr_key_values[i][0])
+            new_value_states = self.convert_to_fp16(curr_key_values[i][1])
+
+        self.compile()
+
+    def build_decoder(self, hidden_states, attention_mask, position_ids,
+                      input_layernorm_weight, post_attention_layernorm_weight,
+                      past_key = None,
+                      past_value = None):
+
+        residual = hidden_states
+
+        input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
+
+        # input layernorm
+        input_2d = self.convert_to_fp32(input_2d)
+        variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
+        eps = self.constant(self.rms_norm_eps)
+        input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
+        input_layernorm_weight = self.constant(input_layernorm_weight)
+        input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
+        input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
+        input_2d = self.convert_to_fp16(input_2d)
+
+        # attention
+        query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
+        key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
+        value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
+
+        query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
+        key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
+        value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
+        
+        query_states = self.transpose(query_states, [0, 2, 1, 3])
+        key_states = self.transpose(key_states, [0, 2, 1, 3])
+        value_states = self.transpose(value_states, [0, 2, 1, 3])
+        
+        query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, self.cos, self.sin, position_ids)
+        new_key_states = key_states
+        new_value_states = value_states
+        
+        # repeat_kv cannot be implemented because Broadcast op is needed
+        # key_states = repeat_kv(key_states, self.num_key_value_groups)
+        # value_states = repeat_kv(value_states, self.num_key_value_groups)
+        invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
+        
+        if self.mode == "decode":
+            key_states = self.concat(past_key, key_states, axis=-2)
+            value_states = self.concat(past_value, value_states, axis=-2)
+        
+        attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
+        attn_weight = self.eltwise_add(attn_weight, attention_mask)
+        attn_weight = self.convert_to_fp32(attn_weight)
+        attn_weight = self.softmax(attn_weight, -1)
+        attn_weight = self.convert_to_fp16(attn_weight)
+        attn_output = self.matmul(attn_weight, value_states, False, False)
+
+        attn_output = self.transpose(attn_output, [0, 2, 1, 3])
+        attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
+        
+        attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=self.dtype)
+
+        hidden_states = self.eltwise_add(residual, attn_output)
+
+        # Fully Connected
+        residual = hidden_states
+        hidden_states = self.convert_to_fp32(hidden_states)
+        variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
+        hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
+        post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
+        post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
+        hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
+        hidden_states = self.convert_to_fp16(hidden_states)
+
+        # mlp
+        mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
+                          bias=False, wt_dtype=self.dtype)
+        mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
+                          bias=False, wt_dtype=self.dtype)  # type: ignore[attr-defined]
+        mm1 = self.eltwise_mul(self.swish(mm1), mm2)  # type: ignore[attr-defined]
+
+        hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype)
+        
+        hidden_states = self.eltwise_add(residual, hidden_states)
+        hidden_states = self.convert_to_fp16(hidden_states)
+
+        return hidden_states, new_key_states, new_value_states
+    
+    def rotate_half(self, x):
+        x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
+        x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
+        return self.concat(self.negative(x2), x1, axis=-1)
+    
+    def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
+        position_ids = self.squeeze(position_ids)
+        cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
+        sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
+        cos = self.unsqueeze(cos, [1])
+        sin = self.unsqueeze(sin, [1])
+        
+        q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
+        k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
+        
+        return q_embed, k_embed
+
+
+class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
+
+    def __init__(
+        self,
+        parameters: List[Tuple[torch.Tensor]],
+        input_laynorm_weights: List[torch.Tensor],
+        post_attn_layernorm_weights: List[torch.Tensor],
+        layer_indexes : List[int],
+        cached_cos,
+        cached_sin,
+        num_heads: int,
+        head_dim: int,
+        num_key_value_heads: int,
+        rms_norm_eps,
+        intermediate_size,
+        max_seq_len: int = 128,
+    ):
+        super().__init__()
+
+        op_parameters = []
+        for w in parameters:
+            if isinstance(w, tuple):  # from QuantizedLinear
+                op_parameters.append((w[0].numpy(), w[1].numpy()))
+            else:
+                op_parameters.append(w.to(torch.float16).numpy())
+        self.op_parameters = op_parameters
+        self.op_id = str(uuid.uuid4())
+        # self.layer_idx = layer_idx
+        self.max_seq_len = max_seq_len
+        # self.rotary_emb = rotary_emb
+        if isinstance(parameters[0], tuple):  # weight, scale from QuantizedLinear
+            np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
+        else:  # FP16 Linear
+            invalidInputError(False, "Please use int4 optimization")
+        
+        self.layer_indexes = layer_indexes
+
+        print("create dedcoder layer")
+        self.backend_cls_decode = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
+                                          input_layernorm_weights=input_laynorm_weights,
+                                          post_attn_layernorm_weights=post_attn_layernorm_weights,
+                                          cached_cos=cached_cos,
+                                          cached_sin=cached_sin,
+                                          num_heads=num_heads,
+                                          num_key_value_heads=num_key_value_heads,
+                                          num_layers=len(layer_indexes),
+                                          max_seq_len=max_seq_len,
+                                          rms_norm_eps=rms_norm_eps,
+                                          intermediate_size=intermediate_size,
+                                          mode="decode",
+                                          dtype=np_dtype)
+        print("created dedcoder layer")
+        
+        self.backend_cls_decode.setWeights(3+len(layer_indexes)*2, self.op_id, *op_parameters)
+        print("weight setted")
+        backend_lib.run(self.backend_cls_decode._mm,)
+        print("first inference done")
+        self.kv_cache_c_parameter_handel = None
+        self.kv_cache_parameters = None
+        self.kv_cache_prefetched = False
+
+    def forward(self,
+                hidden_states: torch.Tensor,
+                attention_mask: Optional[torch.Tensor] = None,
+                position_ids: Optional[torch.LongTensor] = None,
+                past_key_value: Optional[Cache] = None,
+                output_attentions: bool = False,
+                use_cache: bool = False,
+                cache_position: Optional[torch.LongTensor] = None,
+                **kwargs,) -> torch.Tensor:
+        """Torch module forward method.
+
+        Args:
+            x (torch.Tensor): Input tensor
+
+        Returns:
+            torch.Tensor: result
+        """
+        seq_len = hidden_states.shape[1]
+        backend_cls = self.backend_cls_decode
+
+        pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
+
+        pad_mask = (0, pad_len)
+        padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
+                                value=torch.finfo(torch.float16).min)
+        padded_attention_mask[:,:,:,-1] = 0.0
+        inputs = (hidden_states.to(torch.float16),
+                  padded_attention_mask,
+                  position_ids,)
+
+        if self.kv_cache_parameters is None:
+            self.kv_cache_parameters = []
+            self.kv_cache_c_parameter_handel = None
+            self.kv_cache_prefetched = False
+        else:
+            # the case kv cache changed
+            cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
+            current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
+            if cached_prt != current_ptr:
+                self.kv_cache_parameters = []
+                self.kv_cache_c_parameter_handel = None
+                self.kv_cache_prefetched = False
+
+        if len(self.kv_cache_parameters) == 0:
+            for idx in self.layer_indexes:
+                past_key = past_key_value.key_cache[idx]
+                past_value = past_key_value.value_cache[idx]
+                new_size = (past_key.size(0),
+                            past_key.size(1),
+                            self.max_seq_len,
+                            past_key.size(3))
+                past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
+                past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
+
+                self.kv_cache_parameters.append(past_key)
+                self.kv_cache_parameters.append(past_value)
+            self.kv_cache_c_parameter_handel = self.backend_cls_decode.create_parameters([p.numpy() for p in self.kv_cache_parameters])
+
+        x_np = [elem.to(torch.float16).numpy() for elem in inputs]
+
+        with record_function(f"npu_factory"):
+            if not self.kv_cache_prefetched:
+                self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
+
+            for idx, elem in enumerate(x_np):
+                self.backend_cls_decode.set_input_tensor(elem, idx)
+
+            backend_lib.run(self.backend_cls_decode._mm,)
+            ret = self.backend_cls_decode.out
+            results = [adapt_output_tensor(r, r.shape, torch.float16) for r in ret]
+
+        hidden_states = results[0]
+        key_value_states = results[1:]
+
+        cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
+        for i in range(len(self.layer_indexes)):
+            key_states, value_states = past_key_value.update(key_value_states[2*i],
+                                                             key_value_states[2*i+1],
+                                                             self.layer_indexes[i], cache_kwargs)
+        
+        self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
+        self.kv_cache_prefetched = True
+        outputs = (hidden_states,)
+        outputs += (past_key_value,)
+
+        return outputs
+
+
+class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
+    def __init__(
+        self,
+        parameters: List[torch.Tensor],
+        cached_cos,
+        cached_sin,
+        layer_norm_0,
+        layer_norm_1,
+        num_heads: int,
+        num_key_value_heads: int,
+        layer_idx: int,
+        rms_norm_eps,
+        intermediate_size,
+        max_seq_len: int = 128,
+    ):
+        super().__init__()
+        self.op_parameters = parameters
+        self.op_id = str(uuid.uuid4())
+        self.layer_idx = layer_idx
+        self.max_seq_len = max_seq_len
+        # self.rotary_emb = rotary_emb
+        if isinstance(parameters[0], tuple):  # weight, scale from QuantizedLinear
+            np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
+        else:  # FP16 Linear
+            np_dtype = np.float16
+
+        self.backend_cls_prefill = partial(LowBitLlamaDecoderlayer,
+                                           cached_cos=cached_cos,
+                                           cached_sin=cached_sin,
+                                           num_heads=num_heads,
+                                           num_key_value_heads=num_key_value_heads,
+                                           max_seq_len=max_seq_len,
+                                           rms_norm_eps=rms_norm_eps,
+                                           intermediate_size=intermediate_size,
+                                           mode="prefill",
+                                           dtype=np_dtype)
+        self.backend_cls_decode = partial(LowBitLlamaDecoderlayer,
+                                          cached_cos=cached_cos,
+                                          cached_sin=cached_sin,
+                                          num_heads=num_heads,
+                                          num_key_value_heads=num_key_value_heads,
+                                          max_seq_len=max_seq_len,
+                                          rms_norm_eps=rms_norm_eps,
+                                          intermediate_size=intermediate_size,
+                                          mode="decode",
+                                          dtype=np_dtype)
+        self.layer_norm_0 = layer_norm_0
+        self.layer_norm_1 = layer_norm_1
+        
+
+    def forward(self,
+                hidden_states: torch.Tensor,
+                attention_mask: Optional[torch.Tensor] = None,
+                position_ids: Optional[torch.LongTensor] = None,
+                past_key_value: Optional[Cache] = None,
+                output_attentions: bool = False,
+                use_cache: bool = False,
+                cache_position: Optional[torch.LongTensor] = None,
+                **kwargs,) -> torch.Tensor:
+        seq_len = hidden_states.shape[1]
+        # cos, sin = self.rotary_emb(hidden_states, position_ids)
+        if seq_len == 1:
+            backend_cls = self.backend_cls_decode
+            past_key = past_key_value.key_cache[self.layer_idx]
+            past_value = past_key_value.value_cache[self.layer_idx]
+
+            new_size = (past_key.size(0),
+                        past_key.size(1),
+                        self.max_seq_len,
+                        past_key.size(3))
+            past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
+            past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
+
+            pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
+
+            pad_mask = (0, pad_len)
+            padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
+                                    value=torch.finfo(torch.float16).min)
+            padded_attention_mask[:,:,:,-1] = 0.0
+            inputs = (hidden_states.to(torch.float16),
+                      padded_attention_mask,
+                      position_ids,)
+
+            inputs += (self.layer_norm_0, self.layer_norm_1)
+
+            inputs += (past_key, past_value)
+            hidden_states, new_key, new_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=4)
+            cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
+            key_states, value_states = past_key_value.update(new_key, new_value, self.layer_idx, cache_kwargs)
+        else:
+            backend_cls = self.backend_cls_prefill
+            inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
+            inputs += (self.layer_norm_0, self.layer_norm_1)
+            hidden_states, past_key, past_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=1)
+            cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
+            key_states, value_states = past_key_value.update(past_key, past_value, self.layer_idx, cache_kwargs)
+
+        outputs = (hidden_states,)
+        outputs += (past_key_value,)
+        return outputs
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model')
+    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
+                        help='The huggingface repo id for the Llama2 model to be downloaded'
+                             ', or the path to the huggingface checkpoint folder')
+    parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
+                        help='Prompt to infer')
+    parser.add_argument('--n-predict', type=int, default=32,
+                        help='Max tokens to predict')
+
+    args = parser.parse_args()
+    model_path = args.repo_id_or_model_path
+
+    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
+
+    pipeline = True # default
+    max_seq_len = 1024 # default
+    if pipeline:
+        os.environ['MASTER_ADDR'] = '127.0.0.1'
+        os.environ['MASTER_PORT'] = '29501'
+
+        dist.init_process_group()
+        my_rank = dist.get_rank()
+        my_size = dist.get_world_size()
+        logger.info(f"rank: {my_rank}, size: {my_size}")
+
+        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
+                                                     load_in_low_bit="sym_int4", pipeline_parallel_stages=2)
+
+        if my_rank == 0:
+            print(model)
+        dist.barrier()
+
+        if my_rank == 1:
+            print(model)
+    else:
+        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
+                                                     load_in_low_bit="sym_int4")
+
+    if pipeline:
+        layer_start = model.layer_start
+        layer_end = model.layer_end
+        num_layers = model.num_layers
+    else:
+        layer_start = 0
+        layer_end = 32
+        num_layers = 32
+    num_heads = model.model.layers[layer_start].self_attn.num_heads
+    num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
+    head_dim = model.model.layers[layer_start].self_attn.head_dim
+    rms_norm_eps = model.config.rms_norm_eps
+    intermediate_size = model.config.intermediate_size
+    deocderlayers = []
+    layer_weights = []
+    input_layer_norm_weights = []
+    post_attn_layernorm_weights = []
+    layer_indexs = range(layer_start, layer_end)
+    for layer_idx in layer_indexs:
+        curr_layer = model.model.layers[layer_idx]
+        attn_layer = curr_layer.self_attn
+        mlp_layer = curr_layer.mlp
+
+        weights = [
+            # model.model.layers[i].input_layernorm.weight.to(torch.float16),
+            (attn_layer.q_proj.weight, attn_layer.q_proj.scale),
+            (attn_layer.k_proj.weight, attn_layer.k_proj.scale),
+            (attn_layer.v_proj.weight, attn_layer.v_proj.scale),
+            (attn_layer.o_proj.weight, attn_layer.o_proj.scale),
+            # model.model.layers[i].post_attention_layernorm.weight.to(torch.float16),
+            (mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
+            (mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
+            (mlp_layer.down_proj.weight, mlp_layer.down_proj.scale)]
+
+        cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
+        cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
+
+        layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
+        layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
+
+        new_decoderlayer = FusedLlamaLowBitDecoderlayer(weights,
+                                            num_heads=num_heads,
+                                            num_key_value_heads=num_key_value_heads,
+                                            cached_cos=cached_cos,
+                                            cached_sin=cached_sin,
+                                            # rotary_emb=model.model.layers[i].self_attn.rotary_emb,
+                                            layer_norm_0=layer_norm_0,
+                                            layer_norm_1=layer_norm_1,
+                                            layer_idx=layer_idx,
+                                            rms_norm_eps=rms_norm_eps,
+                                            intermediate_size=intermediate_size,
+                                            max_seq_len=max_seq_len)
+        
+        layer_weights.extend(weights)
+        input_layer_norm_weights.append(layer_norm_0)
+        post_attn_layernorm_weights.append(layer_norm_1)
+        model.model.layers[layer_idx] = new_decoderlayer
+
+    multi_decoder = FusedLlamaLowBitMultiDecoderlayer(
+        parameters=layer_weights,
+        input_laynorm_weights=input_layer_norm_weights,
+        post_attn_layernorm_weights=post_attn_layernorm_weights,
+        layer_indexes=layer_indexs,
+        cached_cos=cached_cos,
+        cached_sin=cached_sin,
+        num_heads=num_heads,
+        head_dim=head_dim,
+        num_key_value_heads=num_key_value_heads,
+        rms_norm_eps=rms_norm_eps,
+        intermediate_size=intermediate_size,
+        max_seq_len=max_seq_len,
+    )
+
+    model.model.multi_decoder = multi_decoder
+    print(model)
+
+    with torch.inference_mode():
+        input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
+        print("finish to load")
+        print('input length:', len(input_ids[0]))
+        for i in range(3):
+            st = time.time()
+            output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict)
+            end = time.time()
+            if my_rank == 0:
+                print(f"First token cost: {model.first_token_time} s, rest tokens cost average: {model.rest_cost_mean} s")
+                print(f'Inference time: {end-st} s')
+                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
+                print('-'*20, 'Prompt', '-'*20)
+                print(args.prompt)
+                print('-'*20, 'Output', '-'*20)
+                print(output_str)
diff --git a/python/llm/src/ipex_llm/transformers/npu_model.py b/python/llm/src/ipex_llm/transformers/npu_model.py
index 2a3ecffc..444d55ce 100644
--- a/python/llm/src/ipex_llm/transformers/npu_model.py
+++ b/python/llm/src/ipex_llm/transformers/npu_model.py
@@ -27,7 +27,7 @@ from transformers.configuration_utils import PretrainedConfig
 
 from ipex_llm.utils.common.log4Error import invalidInputError
 from ipex_llm.transformers.utils import logger
-from ipex_llm.transformers.npu_models.convert import optimize_llm
+from ipex_llm.transformers.npu_models.convert import optimize_llm, optimize_llm_post
 
 
 def patch_flash_attn_import(filename: str) -> List[str]:
@@ -84,7 +84,7 @@ class _BaseAutoModelClass:
             warnings.warn("`device_map` will be ignored")
         kwargs['device_map'] = 'cpu'
 
-        if kwargs.get('torch_dtype', None) not in [None, 'auto', torch.float]:
+        if kwargs.get('torch_dtype', None) not in [None, 'auto', torch.float, torch.float16]:
             warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used")
         kwargs['torch_dtype'] = torch.float
 
@@ -114,7 +114,7 @@ class _BaseAutoModelClass:
         ignore_argument(kwargs, "modules_to_not_convert")
         ignore_argument(kwargs, "quantization_config")
         ignore_argument(kwargs, "speculative")
-        ignore_argument(kwargs, "pipeline_parallel_stages")
+        pipeline_parallel_stages = kwargs.pop("pipeline_parallel_stages", 1)
 
         _args = copy.deepcopy(args)
         _kwargs = copy.deepcopy(kwargs)
@@ -131,12 +131,28 @@ class _BaseAutoModelClass:
 
         logger.info(f"Converting model, it may takes up to several minutes ...")
 
+        if pipeline_parallel_stages > 1:
+            invalidInputError(torch.distributed.get_world_size() == pipeline_parallel_stages,
+                              "Please make sure world size is same as `pipeline_parallel_stages`")
+            kwargs['torch_dtype'] = torch.float16
+            from .npu_models.pipeline_parallel import pipeline_parallel, pipeline_parallel_generate
+            model = pipeline_parallel(model, pipeline_parallel_stages,
+                                      kwargs["torch_dtype"], device="cpu")
+
+            # add pipeline_parallel_generate to pretrained model dynamically
+            model.pipeline_parallel_generate = types.MethodType(pipeline_parallel_generate,
+                                                                model)
+
         from intel_npu_acceleration_library.compiler import create_npu_kernels
         with torch.no_grad():
             optimize_llm(model)
-            cls.load_convert(qtype, model, 'cpu', *args, **kwargs)
-            create_npu_kernels(model)
-
+            if pipeline_parallel_stages == 1:
+                cls.load_convert(qtype, model, 'cpu', *args, **kwargs)
+                create_npu_kernels(model)
+            else:
+                cls.load_convert(qtype, model.model, 'cpu', *args, **kwargs)
+                create_npu_kernels(model.model)
+                optimize_llm_post(model)
         model = model.eval()
 
         logger.info(f"Finish to convert model")
diff --git a/python/llm/src/ipex_llm/transformers/npu_models/convert.py b/python/llm/src/ipex_llm/transformers/npu_models/convert.py
index cd4b5fed..edc76687 100644
--- a/python/llm/src/ipex_llm/transformers/npu_models/convert.py
+++ b/python/llm/src/ipex_llm/transformers/npu_models/convert.py
@@ -63,7 +63,8 @@ def replace_with_QuantizedLinear(layer, qtype, device):
                (layer.in_features == 18944 and layer.out_features == 3584):
                 qtype = "sym_int8_rtn"
                 iqtype = ggml_tensor_qtype[qtype]
-        qweights, scale = ggml_convert_qtype(layer.weight.data, iqtype, device=device)
+        qweights, scale = ggml_convert_qtype(layer.weight.data.to(torch.float32),
+                                             iqtype, device=device)
         return QuantizedLinear(qweights, scale, layer.bias)
 
 
@@ -79,18 +80,22 @@ def optimize_llm(model: torch.nn.Module):
     if model.config.model_type == "llama":
         from ipex_llm.transformers.npu_models.llama import merge_qkv
         from ipex_llm.transformers.npu_models.llama import merge_mlp
-        model.apply(merge_qkv)
-        model.apply(merge_mlp)
-
         from ipex_llm.transformers.npu_models.llama import llama_model_forward
+        from ipex_llm.transformers.npu_models.llama import llama_fused_model_forward
         from ipex_llm.transformers.npu_models.llama import llama_attention_forward
         from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
         from transformers.models.llama.modeling_llama import LlamaModel
         from transformers.models.llama.modeling_llama import LlamaAttention
         from transformers.models.llama.modeling_llama import LlamaMLP
-        convert_forward(model, LlamaModel, llama_model_forward)
-        convert_forward(model, LlamaAttention, llama_attention_forward)
-        convert_forward(model, LlamaMLP, llama_mlp_forward)
+        if hasattr(model, 'pipeline_parallel_stages'):
+            # experimental support for fused decoderlayer implementation
+            convert_forward(model, LlamaModel, llama_fused_model_forward)
+        else:
+            model.apply(merge_qkv)
+            model.apply(merge_mlp)
+            convert_forward(model, LlamaModel, llama_model_forward)
+            convert_forward(model, LlamaAttention, llama_attention_forward)
+            convert_forward(model, LlamaMLP, llama_mlp_forward)
 
     elif model.config.model_type == "mistral":
         from ipex_llm.transformers.npu_models.mistral import merge_qkv
@@ -207,3 +212,28 @@ def optimize_llm(model: torch.nn.Module):
         from ipex_llm.transformers.npu_models.phi3 import phi3_attention_forward
 
         convert_forward(model, module.Phi3Attention, phi3_attention_forward)
+
+
+def optimize_llm_post(model: torch.nn.Module):
+    # experimental support for fused decoderlayer implementation
+    if model.config.model_type == "llama":
+        model.model.embed_tokens.to(torch.float32)
+        model.model.norm.to(torch.float32)
+        model.lm_head.to(torch.float32)
+
+        from ipex_llm.transformers.low_bit_linear import LowBitLinear, \
+            ggml_tensor_qtype, FP4Params
+
+        if isinstance(model.lm_head, torch.nn.Linear):
+            new_linear = LowBitLinear(model.lm_head.in_features,
+                                      model.lm_head.out_features,
+                                      ggml_tensor_qtype["sym_int4"],
+                                      False)
+            paramsLowBit = FP4Params(data=model.lm_head.weight.data,
+                                     requires_grad=False,
+                                     quantized=False,
+                                     _shape=None,
+                                     qtype=ggml_tensor_qtype["sym_int4"],
+                                     in_features=model.lm_head.in_features).to("cpu")
+            new_linear._parameters['weight'] = paramsLowBit
+            model.lm_head = new_linear
diff --git a/python/llm/src/ipex_llm/transformers/npu_models/kv.py b/python/llm/src/ipex_llm/transformers/npu_models/kv.py
new file mode 100644
index 00000000..ce5b29ee
--- /dev/null
+++ b/python/llm/src/ipex_llm/transformers/npu_models/kv.py
@@ -0,0 +1,115 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+
+import torch
+from typing import Optional, Dict, Tuple, Any
+from transformers.cache_utils import DynamicCache
+
+
+def init_fused_kv_cache(batch_size, num_heads, head_dim, current_length, max_length, dtype, device):
+    key_cache_storage = torch.zeros(batch_size, num_heads,
+                                    max_length, head_dim,
+                                    dtype=dtype, device=device)
+    value_cache_storage = torch.zeros(batch_size, num_heads,
+                                      max_length, head_dim,
+                                      dtype=dtype, device=device)
+
+    key_cache = key_cache_storage.as_strided((batch_size, num_heads,
+                                             current_length, head_dim),
+                                             key_cache_storage.stride(),
+                                             storage_offset=0)
+    value_cache = value_cache_storage.as_strided((batch_size, num_heads,
+                                                 current_length, head_dim),
+                                                 value_cache_storage.stride(),
+                                                 storage_offset=0)
+    return key_cache, value_cache
+
+
+def append_fused_kv_cache(cache_k, cache_v, key_states, value_states):
+    new_size = (cache_k.size(0),
+                cache_k.size(1),
+                cache_k.size(2) + key_states.size(2),
+                cache_k.size(3))
+    new_cache_k = cache_k.as_strided(new_size, cache_k.stride(), storage_offset=0)
+    new_cache_k[:, :, cache_k.size(2):cache_k.size(2) + key_states.size(2), :] = key_states
+    new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
+    new_cache_v[:, :, cache_v.size(2):cache_v.size(2) + key_states.size(2), :] = value_states
+    return new_cache_k, new_cache_v
+
+
+class DynamicFusedNormalCache(DynamicCache):
+    # Experimental support for fused decoderlayer implementation on NPU
+    # Currently only for llama2
+    KV_ALLOC_BLOCK_LENGTH = 256
+
+    def __init__(self) -> None:
+        self.key_cache: Dict[int, torch.Tensor] = {}
+        self.value_cache: Dict[int, torch.Tensor] = {}
+        self._seen_tokens = 0  # Used in `generate` to keep how many tokens the cache has seen
+
+    def update(
+        self,
+        key_states: torch.Tensor,
+        value_states: torch.Tensor,
+        layer_idx: int,
+        cache_kwargs: Optional[Dict[str, Any]]=None,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+
+        batch_size, num_heads, seq_len, head_dim = key_states.shape
+
+        max_seq_length = cache_kwargs.pop("max_seq_len", None)
+        transpose_value = cache_kwargs.pop("transpose_value", None)
+
+        if layer_idx == 0 or layer_idx == 16:
+            if hasattr(self, "_seen_tokens"):
+                # 4.39 uses `_seen_tokens`
+                self._seen_tokens += seq_len
+            else:
+                # 4.37 uses `seen_tokens`
+                self.seen_tokens += seq_len
+
+        # Update the cache
+        # if len(self.key_cache) <= layer_idx:
+        if layer_idx not in self.key_cache:
+            max_len = max_seq_length if max_seq_length is not None else key_states.size(2) + \
+                self.KV_ALLOC_BLOCK_LENGTH
+            k_cache, v_cache = init_fused_kv_cache(
+                batch_size, num_heads, head_dim,
+                0, max_len,
+                key_states.dtype, key_states.device,
+            )
+            k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
+
+            self.key_cache[layer_idx] = k_cache
+            self.value_cache[layer_idx] = v_cache
+        else:
+            k_cache = self.key_cache[layer_idx]
+            v_cache = self.value_cache[layer_idx]
+
+            kv_seq_len = k_cache.size(2) + key_states.size(2)
+            k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
+            self.key_cache[layer_idx] = k_cache
+            self.value_cache[layer_idx] = v_cache
+
+        return self.key_cache[layer_idx], self.value_cache[layer_idx]
+
+    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
+        """Returns the sequence length of the cached states.
+        A layer index can be optionally passed."""
+
+        for idx, layer in self.key_cache.items():
+            return layer.shape[-2]
diff --git a/python/llm/src/ipex_llm/transformers/npu_models/llama.py b/python/llm/src/ipex_llm/transformers/npu_models/llama.py
index ab4c2025..a322d731 100644
--- a/python/llm/src/ipex_llm/transformers/npu_models/llama.py
+++ b/python/llm/src/ipex_llm/transformers/npu_models/llama.py
@@ -182,6 +182,137 @@ def llama_model_forward(
     )
 
 
+def llama_fused_model_forward(
+    self,
+    input_ids: torch.LongTensor = None,
+    attention_mask: Optional[torch.Tensor] = None,
+    position_ids: Optional[torch.LongTensor] = None,
+    past_key_values: Optional[List[torch.FloatTensor]] = None,
+    inputs_embeds: Optional[torch.FloatTensor] = None,
+    use_cache: Optional[bool] = None,
+    output_attentions: Optional[bool] = None,
+    output_hidden_states: Optional[bool] = None,
+    return_dict: Optional[bool] = None,
+    cache_position: Optional[torch.LongTensor] = None,
+) -> Union[Tuple, BaseModelOutputWithPast]:
+    output_attentions = (
+        output_attentions if output_attentions is not None
+        else self.config.output_attentions
+    )
+    output_hidden_states = (
+        output_hidden_states if output_hidden_states is not None
+        else self.config.output_hidden_states
+    )
+    use_cache = use_cache if use_cache is not None else self.config.use_cache
+    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+    if (input_ids is None) ^ (inputs_embeds is not None):
+        invalidInputError(False,
+                          ("You cannot specify both input_ids and inputs_embeds at the same time, "
+                           "and must specify either one"))
+
+    if self.gradient_checkpointing and self.training and use_cache:
+        use_cache = False
+
+    if inputs_embeds is None:
+        inputs_embeds = self.embed_tokens(input_ids)
+
+    past_seen_tokens = 0
+
+    # ipex-llm changes start
+    from ipex_llm.transformers.npu_models.kv import DynamicFusedNormalCache
+    if use_cache and not isinstance(past_key_values, DynamicFusedNormalCache):
+        past_key_values = DynamicFusedNormalCache.from_legacy_cache(past_key_values)
+        past_seen_tokens = past_key_values.get_seq_length()
+
+    if cache_position is None:
+        cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
+                                      device=inputs_embeds.device)
+    # ipex-llm changes end
+
+    if position_ids is None:
+        position_ids = cache_position.unsqueeze(0)
+
+    causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
+                                           cache_position, past_seen_tokens)
+
+    # embed positions
+    hidden_states = inputs_embeds
+
+    # decoder layers
+    all_hidden_states = () if output_hidden_states else None
+    all_self_attns = () if output_attentions else None
+    next_decoder_cache = None
+
+    seq_len = hidden_states.size(1)
+
+    if seq_len == 1:
+        # multi_decoder = self.layers[(self.layer_end + 1) % num_layers]
+        layer_outputs = self.multi_decoder(hidden_states,
+                                           attention_mask=causal_mask,
+                                           position_ids=position_ids,
+                                           past_key_value=past_key_values,
+                                           output_attentions=output_attentions,
+                                           use_cache=use_cache,
+                                           cache_position=cache_position,)
+        hidden_states = layer_outputs[0]
+
+        next_decoder_cache = layer_outputs[1]
+    else:
+        for decoder_layer in self.layers:
+            if output_hidden_states:
+                all_hidden_states += (hidden_states,)
+
+            if self.gradient_checkpointing and self.training:
+                layer_outputs = self._gradient_checkpointing_func(
+                    decoder_layer.__call__,
+                    hidden_states,
+                    causal_mask,
+                    position_ids,
+                    past_key_values,
+                    output_attentions,
+                    use_cache,
+                    cache_position,
+                )
+            else:
+                layer_outputs = decoder_layer(
+                    hidden_states,
+                    attention_mask=causal_mask,
+                    position_ids=position_ids,
+                    past_key_value=past_key_values,
+                    output_attentions=output_attentions,
+                    use_cache=use_cache,
+                    cache_position=cache_position,
+                )
+
+            hidden_states = layer_outputs[0]
+
+            if use_cache:
+                next_decoder_cache = layer_outputs[2 if output_attentions else 1]
+
+            if output_attentions:
+                all_self_attns += (layer_outputs[1],)
+
+    hidden_states = self.norm(hidden_states)
+
+    # add hidden states from the last decoder layer
+    if output_hidden_states:
+        all_hidden_states += (hidden_states,)
+
+    # ipex-llm changes start
+    next_cache = next_decoder_cache if use_cache else None
+    # ipex-llm changes end
+    if not return_dict:
+        return tuple(v for v in [hidden_states, next_cache,
+                                 all_hidden_states, all_self_attns] if v is not None)
+    return BaseModelOutputWithPast(
+        last_hidden_state=hidden_states,
+        past_key_values=next_cache,
+        hidden_states=all_hidden_states,
+        attentions=all_self_attns,
+    )
+
+
 def llama_attention_forward(
     self,
     hidden_states: torch.Tensor,
diff --git a/python/llm/src/ipex_llm/transformers/npu_models/pipeline_parallel.py b/python/llm/src/ipex_llm/transformers/npu_models/pipeline_parallel.py
new file mode 100644
index 00000000..69614439
--- /dev/null
+++ b/python/llm/src/ipex_llm/transformers/npu_models/pipeline_parallel.py
@@ -0,0 +1,639 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+# Some parts of this file is adapted from
+# https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
+#
+
+import torch
+from torch import nn
+from torch.nn import CrossEntropyLoss
+import torch.nn.functional as F
+import torch.distributed as dist
+import os
+import time
+import numpy as np
+from typing import Callable, List, Optional, Union, Tuple
+from types import SimpleNamespace
+import transformers
+from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
+from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
+from ipex_llm.utils.common import invalidInputError
+from ipex_llm.ggml.quantize import ggml_tensor_qtype
+import logging
+logger = logging.getLogger(__name__)
+
+# patch GenerationMixin.generate
+from transformers import GenerationMixin
+original_generate = GenerationMixin.generate
+
+
+class DummyLayer(nn.Module):
+    def __init__(self, *args):
+        super().__init__()
+        # to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
+        # python/llm/src/ipex_llm/transformers/models/llama.py#L2076
+        self.weight = nn.Parameter(torch.empty(0,), requires_grad=False)
+
+    def forward(self, x):
+        return x
+
+
+class Dummy_MLPLayer(nn.Module):
+    def __init__(self, *args):
+        super().__init__()
+        # to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
+        # python/llm/src/ipex_llm/transformers/models/llama.py#L119
+        self.up_proj = DummyLayer()
+        self.down_proj = DummyLayer()
+        self.shared_expert = SimpleNamespace()
+        self.shared_expert.up_proj = DummyLayer()
+
+    def forward(self, x):
+        return x
+
+
+class Dummy_DecoderLayer(nn.Module):
+    def __init__(self, *args):
+        super().__init__()
+        # to avoid AttributeError
+        self.input_layernorm = DummyLayer()
+        self.mlp = Dummy_MLPLayer()
+
+    def forward(self, hidden_states, *args, **kwargs):
+        past_key_value = kwargs.get('past_key_value', None)
+        use_cache = kwargs.get('use_cache', False)
+        outputs = (hidden_states,)
+        if use_cache:
+            outputs += (past_key_value,)
+        return outputs
+
+
+class Dummy_GLMBlock(nn.Module):
+    def __init__(self, *args):
+        super().__init__()
+        # to avoid AttributeError
+        self.input_layernorm = DummyLayer()
+        self.mlp = Dummy_MLPLayer()
+
+    def forward(
+            self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
+    ):
+        if kv_cache is None:
+            return hidden_states, ()
+        return hidden_states, kv_cache
+
+
+def init_pipeline_parallel():
+    import oneccl_bindings_for_pytorch
+    os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1")
+    os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
+    dist.init_process_group('ccl')
+
+
+def low_mem_convert(model):
+    from ipex_llm.transformers.convert import convert_forward
+    import importlib
+    if 'llama' in model.config.model_type:
+        convert_forward(
+            model,
+            transformers.models.llama.modeling_llama.LlamaForCausalLM,
+            llama_causallm_forward_4_37_lowmem)
+    elif model.config.model_type == "chatglm" and not hasattr(model.config, "vision_config"):
+        if model.config.num_layers == 40:
+            # for glm4-9b
+            modeling_module_name = model.__class__.__module__
+            module = importlib.import_module(modeling_module_name)
+            convert_forward(
+                model,
+                module.ChatGLMForConditionalGeneration,
+                glm4_conditional_generation_forward_lowmem)
+        else:
+            # for chatglm3-6b
+            modeling_module_name = model.__class__.__module__
+            module = importlib.import_module(modeling_module_name)
+            convert_forward(
+                model,
+                module.ChatGLMForConditionalGeneration,
+                chatglm3_conditional_generation_forward_lowmem)
+    return model
+
+
+def pipeline_parallel(model, pipeline_parallel_stages, torch_dtype=torch.float32, device=None):
+    global num_layers
+    if hasattr(model.config, 'num_hidden_layers'):
+        num_layers = model.config.num_hidden_layers
+    elif hasattr(model.config, 'num_layers'):
+        # for chatglm3-6b
+        num_layers = model.config.num_layers
+
+    slice_size = (num_layers + pipeline_parallel_stages - 1) // pipeline_parallel_stages
+
+    local_rank = dist.get_rank()
+
+    global layer_start
+    global layer_end
+    layer_start = slice_size * local_rank
+    layer_end = layer_start + min(slice_size, num_layers - layer_start)
+
+    if model.config.model_type == "qwen" and hasattr(model.config, "visual"):
+        # for Qwen-VL-Chat
+        for i in range(num_layers):
+            if i < layer_start or i >= layer_end:
+                model._modules['transformer'].h[i] = Dummy_DecoderLayer()
+        if local_rank != 0:
+            model._modules['transformer'].wte = DummyLayer()
+            model._modules['transformer'].drop = DummyLayer()
+        if local_rank != pipeline_parallel_stages - 1:
+            model._modules['transformer'].ln_f = DummyLayer()
+            model._modules['ln_f'] = DummyLayer()
+            model._modules['lm_head'] = DummyLayer()
+    elif model.config.model_type == "chatglm":
+        # for chatglm3-6b, glm-4-9b-chat
+        for i in range(num_layers):
+            if i < layer_start or i >= layer_end:
+                model._modules['transformer'].encoder.layers[i] = Dummy_GLMBlock()
+            else:
+                model._modules['transformer'].encoder.layers[i].self_attention.num_layers = \
+                    i - layer_start
+
+        if local_rank != 0:
+            model._modules['transformer'].embedding = DummyLayer()
+        if local_rank != pipeline_parallel_stages - 1:
+            model._modules['transformer'].encoder.final_layernorm = DummyLayer()
+            model._modules['transformer'].output_layer = DummyLayer()
+    else:
+        for i in range(num_layers):
+            if i < layer_start or i >= layer_end:
+                model._modules['model'].layers[i] = Dummy_DecoderLayer()
+            else:
+                model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
+
+        if local_rank != 0:
+            model._modules['model'].embed_tokens = DummyLayer()
+        if local_rank != pipeline_parallel_stages - 1:
+            model._modules['model'].norm = DummyLayer()
+            model._modules['lm_head'] = DummyLayer()
+
+    _enable_lowmem = os.getenv('IPEX_LLM_LOW_MEM')
+    _enable_lowmem = (_enable_lowmem is not None) and (_enable_lowmem.lower() == "1")
+    if _enable_lowmem:
+        model = low_mem_convert(model)
+
+    model.pipeline_parallel_stages = pipeline_parallel_stages
+    model.layer_start = layer_start
+    model.layer_end = layer_end
+    model.num_layers = num_layers
+    if torch_dtype == torch.float16:
+        model = model.half()
+    if device is None:
+        model = model.to(f'xpu:{local_rank}')
+    else:
+        model.to(device)
+    return model
+
+
+@torch.no_grad()
+def generate(
+    self,
+    inputs: Optional[torch.Tensor] = None,
+    generation_config: Optional[GenerationConfig] = None,
+    logits_processor: Optional[LogitsProcessorList] = None,
+    stopping_criteria: Optional[StoppingCriteriaList] = None,
+    prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None,
+    synced_gpus: Optional[bool] = None,
+    assistant_model: Optional["PreTrainedModel"] = None,
+    streamer: Optional["BaseStreamer"] = None,
+    **kwargs,
+):
+    if hasattr(self, 'pipeline_parallel_stages') and self.pipeline_parallel_stages > 1:
+        # priority: `generation_config` argument > `model.generation_config`
+        if generation_config is None:
+            if (
+                self.generation_config._from_model_config
+                and self.generation_config._original_object_hash == hash(self.generation_config)
+                and self.config._has_non_default_generation_parameters()
+            ):
+                new_generation_config = GenerationConfig.from_model_config(self.config)
+                if new_generation_config != self.generation_config:
+                    self.generation_config = new_generation_config
+            generation_config = self.generation_config
+
+        if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
+            eos_token_id = generation_config.eos_token_id
+            if isinstance(eos_token_id, list):
+                eos_token_id = eos_token_id[0]
+            logger.warning("Setting `pad_token_id` to `eos_token_id`: "
+                           f"{eos_token_id} for open-end generation.")
+            generation_config.pad_token_id = eos_token_id
+
+        if generation_config is not None and generation_config.max_new_tokens is not None:
+            max_new_tokens = generation_config.pop("max_new_tokens")
+        else:
+            max_new_tokens = kwargs.pop("max_new_tokens", None)
+
+        return self.pipeline_parallel_generate(inputs=inputs,
+                                               max_new_tokens=max_new_tokens,
+                                               generation_config=generation_config,
+                                               **kwargs)
+
+    return original_generate(self,
+                             inputs=inputs,
+                             generation_config=generation_config,
+                             logits_processor=logits_processor,
+                             stopping_criteria=stopping_criteria,
+                             prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
+                             synced_gpus=synced_gpus,
+                             assistant_model=assistant_model,
+                             streamer=streamer,
+                             **kwargs)
+
+GenerationMixin.generate = generate
+
+
+@torch.no_grad()
+def pipeline_parallel_generate(self,
+                               inputs: Optional[torch.Tensor] = None,
+                               max_new_tokens: int = 32,
+                               generation_config: Optional[GenerationConfig] = None,
+                               **kwargs):
+    model_kwargs = generation_config.update(**kwargs)
+    inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
+        inputs, generation_config.bos_token_id, model_kwargs
+    )
+    bs = inputs_tensor.shape[0]
+    if model_kwargs.get("attention_mask", None) is None:
+        model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
+            inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id)
+    if self.config.is_encoder_decoder:
+        input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
+            batch_size=bs,
+            model_input_name=model_input_name,
+            model_kwargs=model_kwargs,
+            decoder_start_token_id=generation_config.decoder_start_token_id,
+            bos_token_id=generation_config.bos_token_id,
+            device=inputs_tensor.device,
+        )
+    else:
+        input_ids = inputs_tensor if model_input_name == "input_ids" \
+            else model_kwargs.pop("input_ids")
+
+    local_rank = dist.get_rank()
+    pre_rank = (local_rank - 1) % self.pipeline_parallel_stages
+    next_rank = (local_rank + 1) % self.pipeline_parallel_stages
+
+    global layer_start
+    global layer_end
+    global num_layers
+
+    self.first_token_time = 0
+    self.next_token_time = []
+
+    pad_token_id = generation_config.pad_token_id
+    eos_token_id = generation_config.eos_token_id
+    if isinstance(eos_token_id, int):
+        eos_token_id = [eos_token_id]
+    eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) \
+        if eos_token_id is not None else None
+
+    _input_ids = None
+    _past_key_values = None
+
+    bs = input_ids.shape[0]
+    output_ids = input_ids.clone()
+    os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] = "0"
+
+    step = 0
+    # keep track of which sequences are already finished
+    unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
+    this_peer_finished = False
+    while True:
+        if step >= max_new_tokens:
+            break
+
+        if _input_ids is None:
+            _input_ids = input_ids
+
+        model_inputs = self.prepare_inputs_for_generation(output_ids, **model_kwargs)
+
+        tic = time.time()
+        if local_rank == 0:
+            outputs = self(**model_inputs)
+        else:
+            _inputs_shape = _input_ids.shape + (self.config.hidden_size,)
+            if step == 0 and self.config.model_type == "chatglm" \
+               and hasattr(self.config, "vision_config"):
+                # for glm-4v, image features are mapped during 1st token
+                # 1597 are computed according to computation process of conv
+                _images_feature = 1597 + _input_ids.shape[0] * 2 + _input_ids.shape[1]
+                _inputs_shape = (_input_ids.shape[0], _images_feature, self.config.hidden_size,)
+            inputs_embeds = torch.empty(_inputs_shape,
+                                        device=input_ids.device, dtype=torch.float16)
+            dist.recv(inputs_embeds, src=pre_rank)
+            model_inputs.pop("input_ids")
+            model_inputs["inputs_embeds"] = inputs_embeds
+            outputs = self(**model_inputs)
+
+        if local_rank == self.pipeline_parallel_stages - 1:
+            logits = outputs.logits
+            next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
+            dist.broadcast(next_ids, src=local_rank)
+        else:
+            send_data = outputs[0].to(torch.float16)
+            dist.send(send_data, dst=next_rank)
+            next_ids = torch.empty((bs, 1), device=input_ids.device, dtype=torch.int64)
+            dist.broadcast(next_ids, src=self.pipeline_parallel_stages - 1)
+
+        _input_ids = next_ids
+        output_ids = torch.cat([output_ids, next_ids], dim=-1)
+
+        model_kwargs = self._update_model_kwargs_for_generation(
+            outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
+        )
+
+        # finished sentences should have their next token be a padding token
+        next_ids = next_ids.squeeze()
+        if eos_token_id is not None:
+            if pad_token_id is None:
+                invalidInputError(False, "If `eos_token_id` is defined, "
+                                         "make sure that `pad_token_id` is defined.")
+            next_ids = next_ids * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
+
+        if self.config.model_type == "chatglm" and self.config.num_layers == 40 \
+           and not hasattr(self.config, "vision_config"):
+            # for glm-4-9b-chat
+            if step == 0:
+                value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
+                past_key_values_placeholder = tuple(
+                    (value_placeholder, value_placeholder) for _ in range(layer_start)
+                ) + (outputs.past_key_values)[: layer_end - layer_start] + tuple(
+                    (value_placeholder, value_placeholder) for _ in range(layer_end, num_layers)
+                )
+                _past_key_values = past_key_values_placeholder
+            else:
+                _past_key_values = outputs.past_key_values
+        elif self.config.model_type in ["baichuan", "chatglm"] or \
+                (self.config.model_type == "qwen" and hasattr(self.config, "visual")):
+            # for baichuan2, chatglm3, Qwen-VL-Chat, glm-4v-9b
+            if local_rank != 0:
+                value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
+                past_key_values_placeholder = tuple(
+                    (value_placeholder, value_placeholder) for _ in range(layer_start)
+                ) + (outputs.past_key_values)[layer_start:]
+                _past_key_values = past_key_values_placeholder
+            else:
+                _past_key_values = outputs.past_key_values
+        else:
+            _past_key_values = outputs.past_key_values
+
+        toc = time.time()
+        if step == 0:
+            self.first_token_time = toc - tic
+        else:
+            self.next_token_time.append(toc - tic)
+
+        # if eos_token was found in one sentence, set sentence to finished
+        if eos_token_id_tensor is not None:
+            unfinished_sequences = unfinished_sequences.mul(
+                next_ids.tile(eos_token_id_tensor.shape[0], 1)
+                .ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
+            )
+            # stop when each sentence is finished
+            if unfinished_sequences.max() == 0:
+                this_peer_finished = True
+        if this_peer_finished:
+            break
+
+        step += 1
+        if self.device.type == 'xpu':
+            torch.xpu.synchronize()
+    self.rest_cost_mean = np.mean(self.next_token_time)
+    return output_ids
+
+
+def llama_causallm_forward_4_37_lowmem(
+    self,
+    input_ids: torch.LongTensor = None,
+    attention_mask: Optional[torch.Tensor] = None,
+    position_ids: Optional[torch.LongTensor] = None,
+    past_key_values: Optional[List[torch.FloatTensor]] = None,
+    inputs_embeds: Optional[torch.FloatTensor] = None,
+    labels: Optional[torch.LongTensor] = None,
+    use_cache: Optional[bool] = None,
+    output_attentions: Optional[bool] = None,
+    output_hidden_states: Optional[bool] = None,
+    return_dict: Optional[bool] = None,
+) -> Union[Tuple, CausalLMOutputWithPast]:
+
+    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions  # noqa
+    output_hidden_states = (
+        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states  # noqa
+    )
+    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+    outputs = self.model(
+        input_ids=input_ids,
+        attention_mask=attention_mask,
+        position_ids=position_ids,
+        past_key_values=past_key_values,
+        inputs_embeds=inputs_embeds,
+        use_cache=use_cache,
+        output_attentions=output_attentions,
+        output_hidden_states=output_hidden_states,
+        return_dict=return_dict,
+    )
+
+    hidden_states = outputs[0]
+
+    # ipex-llm change starts
+
+    device = hidden_states.device
+
+    if self.config.pretraining_tp > 1:
+        lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)  # noqa
+        logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]  # noqa
+        logits = torch.cat(logits, dim=-1)
+    else:
+        if device.type == "xpu":
+            torch.xpu.empty_cache()
+        logits = self.lm_head(hidden_states)
+        if device.type == "xpu":
+            torch.xpu.empty_cache()
+    # logits = logits.float()
+
+    # ipex-llm change ends
+
+    loss = None
+    if labels is not None:
+        # Shift so that tokens < n predict n
+        shift_logits = logits[..., :-1, :].contiguous()
+        shift_labels = labels[..., 1:].contiguous()
+        # Flatten the tokens
+        loss_fct = CrossEntropyLoss()
+        shift_logits = shift_logits.view(-1, self.config.vocab_size)
+        shift_labels = shift_labels.view(-1)
+        # Enable model parallelism
+        shift_labels = shift_labels.to(shift_logits.device)
+        loss = loss_fct(shift_logits, shift_labels)
+
+    if not return_dict:
+        output = (logits,) + outputs[1:]
+        return (loss,) + output if loss is not None else output
+
+    return CausalLMOutputWithPast(
+        loss=loss,
+        logits=logits,
+        past_key_values=outputs.past_key_values,
+        hidden_states=outputs.hidden_states,
+        attentions=outputs.attentions,
+    )
+
+
+def chatglm3_conditional_generation_forward_lowmem(
+    self,
+    input_ids: Optional[torch.Tensor] = None,
+    position_ids: Optional[torch.Tensor] = None,
+    attention_mask: Optional[torch.Tensor] = None,
+    past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
+    inputs_embeds: Optional[torch.Tensor] = None,
+    labels: Optional[torch.Tensor] = None,
+    use_cache: Optional[bool] = None,
+    output_attentions: Optional[bool] = None,
+    output_hidden_states: Optional[bool] = None,
+    return_dict: Optional[bool] = None,
+    return_last_logit: Optional[bool] = False,
+):
+    use_cache = use_cache if use_cache is not None else self.config.use_cache
+    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+    transformer_outputs = self.transformer(
+        input_ids=input_ids,
+        position_ids=position_ids,
+        attention_mask=attention_mask,
+        past_key_values=past_key_values,
+        inputs_embeds=inputs_embeds,
+        use_cache=use_cache,
+        output_hidden_states=output_hidden_states,
+        return_dict=return_dict,
+    )
+
+    hidden_states = transformer_outputs[0]
+    if return_last_logit:
+        hidden_states = hidden_states[-1:]
+
+    device = hidden_states.device
+    # ipex-llm change starts
+    if device.type == "xpu":
+        torch.xpu.empty_cache()
+    lm_logits = self.transformer.output_layer(hidden_states)
+    if device.type == "xpu":
+        torch.xpu.empty_cache()
+    lm_logits = lm_logits.transpose(0, 1).contiguous()
+
+    loss = None
+    if labels is not None:
+        # lm_logits = lm_logits.to(torch.float32)
+
+        # Shift so that tokens < n predict n
+        shift_logits = lm_logits[..., :-1, :].contiguous()
+        shift_labels = labels[..., 1:].contiguous()
+        # Flatten the tokens
+        loss_fct = CrossEntropyLoss(ignore_index=-100)
+        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
+
+        lm_logits = lm_logits.to(hidden_states.dtype)
+        loss = loss.to(hidden_states.dtype)
+    # ipex-llm change ends
+
+    if not return_dict:
+        output = (lm_logits,) + transformer_outputs[1:]
+        return ((loss,) + output) if loss is not None else output
+
+    return CausalLMOutputWithPast(
+        loss=loss,
+        logits=lm_logits,
+        past_key_values=transformer_outputs.past_key_values,
+        hidden_states=transformer_outputs.hidden_states,
+        attentions=transformer_outputs.attentions,
+    )
+
+
+def glm4_conditional_generation_forward_lowmem(
+    self,
+    input_ids: Optional[torch.Tensor] = None,
+    position_ids: Optional[torch.Tensor] = None,
+    attention_mask: Optional[torch.Tensor] = None,
+    past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
+    inputs_embeds: Optional[torch.Tensor] = None,
+    labels: Optional[torch.Tensor] = None,
+    use_cache: Optional[bool] = None,
+    output_attentions: Optional[bool] = None,
+    output_hidden_states: Optional[bool] = None,
+    return_dict: Optional[bool] = None,
+    return_last_logit: Optional[bool] = False,
+):
+    use_cache = use_cache if use_cache is not None else self.config.use_cache
+    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+    transformer_outputs = self.transformer(
+        input_ids=input_ids,
+        position_ids=position_ids,
+        attention_mask=attention_mask,
+        past_key_values=past_key_values,
+        inputs_embeds=inputs_embeds,
+        use_cache=use_cache,
+        output_hidden_states=output_hidden_states,
+        return_dict=return_dict,
+    )
+
+    hidden_states = transformer_outputs[0]
+    if return_last_logit:
+        hidden_states = hidden_states[:, -1:]
+
+    device = hidden_states.device
+    # ipex-llm change starts
+    if device.type == "xpu":
+        torch.xpu.empty_cache()
+    lm_logits = self.transformer.output_layer(hidden_states)
+    if device.type == "xpu":
+        torch.xpu.empty_cache()
+
+    loss = None
+    if labels is not None:
+        # lm_logits = lm_logits.to(torch.float32)
+
+        # Shift so that tokens < n predict n
+        shift_logits = lm_logits[..., :-1, :].contiguous()
+        shift_labels = labels[..., 1:].contiguous()
+        # Flatten the tokens
+        loss_fct = CrossEntropyLoss(ignore_index=-100)
+        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
+
+        lm_logits = lm_logits.to(hidden_states.dtype)
+        loss = loss.to(hidden_states.dtype)
+    # ipex-llm change ends
+
+    if not return_dict:
+        output = (lm_logits,) + transformer_outputs[1:]
+        return ((loss,) + output) if loss is not None else output
+
+    return CausalLMOutputWithPast(
+        loss=loss,
+        logits=lm_logits,
+        past_key_values=transformer_outputs.past_key_values,
+        hidden_states=transformer_outputs.hidden_states,
+        attentions=transformer_outputs.attentions,
+    )