optimize internlm2 xcomposer agin (#11124)
This commit is contained in:
parent
9372ce87ce
commit
1db9d9a63b
2 changed files with 14 additions and 6 deletions
|
|
@ -45,8 +45,9 @@ from torch import nn
|
|||
from ipex_llm.utils.common import invalidInputError
|
||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
||||
append_kv_cache, is_enough_kv_cache_room_4_31
|
||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
|
||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
|
||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
||||
from ipex_llm.transformers.models.utils import update_past_key_value
|
||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
||||
|
|
@ -83,7 +84,7 @@ def internlm_attention_forward(
|
|||
if past_key_value is not None:
|
||||
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len)
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
||||
if should_use_fuse_rope(hidden_states, position_ids, self.training):
|
||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
|
|
@ -228,7 +229,7 @@ def internlm2_attention_forward(
|
|||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
||||
if should_use_fuse_rope(hidden_states, position_ids, self.training):
|
||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
|
|
@ -376,9 +377,16 @@ def internlm_xcomposser2_attention_forward(
|
|||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
|
||||
# IPEX-LLM OPT: fuse rope
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(
|
||||
query_states, key_states, cos, sin, position_ids, "internlm")
|
||||
if should_use_fuse_rope(hidden_states, position_ids, self.training):
|
||||
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(
|
||||
query_states, key_states, sin, cos, "internlm", position_ids
|
||||
)
|
||||
else:
|
||||
query_states, key_states = apply_rotary_pos_emb(
|
||||
query_states, key_states, cos, sin, position_ids, "internlm")
|
||||
|
||||
# IPEX-LLM OPT: kv cache and quantzie kv cache
|
||||
use_quantize_kv = use_quantize_kv_cache(self.wqkv, hidden_states)
|
||||
|
|
|
|||
|
|
@ -233,7 +233,7 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i
|
|||
k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
|
||||
if model_family in ["qwen", "mixtral"]:
|
||||
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
||||
elif model_family in ["qwen2", "yuan", "stablelm", "qwen2_moe"]:
|
||||
elif model_family in ["qwen2", "yuan", "stablelm", "qwen2_moe", "internlm"]:
|
||||
cos = cos.to(q.dtype)
|
||||
sin = sin.to(q.dtype)
|
||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
|
|
|
|||
Loading…
Reference in a new issue