diff --git a/python/llm/src/ipex_llm/transformers/models/internlm.py b/python/llm/src/ipex_llm/transformers/models/internlm.py index bdee1145..3df5264f 100644 --- a/python/llm/src/ipex_llm/transformers/models/internlm.py +++ b/python/llm/src/ipex_llm/transformers/models/internlm.py @@ -45,8 +45,9 @@ from torch import nn from ipex_llm.utils.common import invalidInputError from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \ append_kv_cache, is_enough_kv_cache_room_4_31 -from ipex_llm.transformers.models.utils import apply_rotary_pos_emb +from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu +from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache from ipex_llm.transformers.models.utils import update_past_key_value from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal @@ -83,7 +84,7 @@ def internlm_attention_forward( if past_key_value is not None: enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len) kv_seq_len += past_key_value[0].shape[-2] - if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad): + if should_use_fuse_rope(hidden_states, position_ids, self.training): query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, key_states, position_ids, @@ -228,7 +229,7 @@ def internlm2_attention_forward( kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] - if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad): + if should_use_fuse_rope(hidden_states, position_ids, self.training): query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, key_states, position_ids, @@ -376,9 +377,16 @@ def internlm_xcomposser2_attention_forward( kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] + + # IPEX-LLM OPT: fuse rope cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb( - query_states, key_states, cos, sin, position_ids, "internlm") + if should_use_fuse_rope(hidden_states, position_ids, self.training): + query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu( + query_states, key_states, sin, cos, "internlm", position_ids + ) + else: + query_states, key_states = apply_rotary_pos_emb( + query_states, key_states, cos, sin, position_ids, "internlm") # IPEX-LLM OPT: kv cache and quantzie kv cache use_quantize_kv = use_quantize_kv_cache(self.wqkv, hidden_states) diff --git a/python/llm/src/ipex_llm/transformers/models/utils.py b/python/llm/src/ipex_llm/transformers/models/utils.py index dcb6de3f..f902c059 100644 --- a/python/llm/src/ipex_llm/transformers/models/utils.py +++ b/python/llm/src/ipex_llm/transformers/models/utils.py @@ -233,7 +233,7 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device) if model_family in ["qwen", "mixtral"]: linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed) - elif model_family in ["qwen2", "yuan", "stablelm", "qwen2_moe"]: + elif model_family in ["qwen2", "yuan", "stablelm", "qwen2_moe", "internlm"]: cos = cos.to(q.dtype) sin = sin.to(q.dtype) cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]