add hpo tutorial (#5011)
This commit is contained in:
		
							parent
							
								
									53ba2d8279
								
							
						
					
					
						commit
						16005ada17
					
				
					 1 changed files with 26 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -45,9 +45,35 @@
 | 
			
		|||
 | 
			
		||||
    In this guide we will describe how to obtain a quantized model with the APIs delivered by BigDL-Nano
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
- [**BigDL-Nano Hyperparameter Tuning (Tensorflow Sequential/Functional API) Quickstart**](./pytorch_quantization_openvino.html)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab][Nano_hpo_tf_seq_func_colab]  [View source on GitHub][Nano_hpo_tf_seq_func]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    In this guide we will describe how to use Nano's built-in HPO utils to do hyperparameter tuning for models defined using Tensorflow Sequential or Functional API.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
- [**BigDL-Nano Hyperparameter Tuning (Tensorflow Subclassing Model) Quickstart**](./pytorch_quantization_openvino.html)
 | 
			
		||||
 | 
			
		||||
    > [Run in Google Colab][Nano_hpo_tf_subclassing_colab]  [View source on GitHub][Nano_hpo_tf_subclassing]
 | 
			
		||||
 | 
			
		||||
    In this guide we will describe how to use Nano's built-in HPO utils to do hyperparameter tuning for models defined by subclassing tf.keras.Model.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
[Nano_pytorch_training]: <https://github.com/intel-analytics/BigDL/blob/main/python/nano/notebooks/pytorch/tutorial/pytorch_train.ipynb>
 | 
			
		||||
[Nano_pytorch_onnxruntime]: <https://github.com/intel-analytics/BigDL/blob/main/python/nano/notebooks/pytorch/tutorial/pytorch_inference_onnx.ipynb>
 | 
			
		||||
[Nano_pytorch_openvino]: <https://github.com/intel-analytics/BigDL/blob/main/python/nano/notebooks/pytorch/tutorial/pytorch_inference_openvino.ipynb>
 | 
			
		||||
[Nano_pytorch_Quantization_inc]: <https://github.com/intel-analytics/BigDL/blob/main/python/nano/notebooks/pytorch/tutorial/pytorch_quantization_inc.ipynb>
 | 
			
		||||
[Nano_pytorch_quantization_inc_onnx]: <https://github.com/intel-analytics/BigDL/blob/main/python/nano/notebooks/pytorch/tutorial/pytorch_quantization_inc.ipynb>
 | 
			
		||||
[Nano_pytorch_quantization_openvino]: <https://github.com/intel-analytics/BigDL/blob/main/python/nano/notebooks/pytorch/tutorial/pytorch_quantization_openvino.ipynb>
 | 
			
		||||
[Nano_hpo_tf_seq_func]: <https://github.com/intel-analytics/BigDL/blob/main/python/nano/notebooks/hpo/seq_and_func.ipynb>
 | 
			
		||||
[Nano_hpo_tf_seq_func_colab]: <https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/nano/notebooks/hpo/seq_and_func.ipynb>
 | 
			
		||||
[Nano_hpo_tf_subclassing]: <https://github.com/intel-analytics/BigDL/blob/main/python/nano/notebooks/hpo/custom.ipynb>
 | 
			
		||||
[Nano_hpo_tf_subclassing_colab]: <https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/nano/notebooks/hpo/custom.ipynb>
 | 
			
		||||
		Loading…
	
		Reference in a new issue