* fix docs

* add resources
This commit is contained in:
Shane Huang 2022-07-04 16:59:10 +08:00 committed by GitHub
parent 3f576e5ffa
commit 53ba2d8279
9 changed files with 53749 additions and 10 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -473,13 +473,14 @@ You can export the trial statistics as pandas dataframe, as shown below.
Below an example of the trials history we have exported as below.
.. image:: ../../../../image/trial_dataframe.png
:width: 600
Plot optimization history and hyperparameters importance
Plot Hyperparamter Optimization History
--------------------------------------------------------
You can also examine the tuning results by making plots about the optimization history, importance of hyperparameters, etc.
You can also plot the optimization history as shown below.
.. tabs::
@ -501,13 +502,207 @@ You can also examine the tuning results by making plots about the optimization h
study = trainer.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_optimization_history
plot1=plot_optimization_history(study)
plot_optimization_history(study)
An example optimization history chart is shown below. It is an interactive chart which you can zoom-in and zoom-out and select data points.
Example plot as below. It is an interactive chart which you can zoom-in and zoom-out and select data points.
.. only:: html
.. raw:: html
<iframe src='../../../_static/visualization.html' height="400px" width="100%" scrolling='no'></iframe>
<iframe src='../../../_static/hpovis/optimization_history.html' height="400px" width="100%" scrolling='no'></iframe>
Plot Intermediate Values
--------------------------------------------------------
You can also plot the intermediate values as shown below. This plot shows the metric result on each epoch/step of each trial, including pruned trials.
.. tabs::
.. tab:: Tensorflow
.. code-block:: python
...
study = model.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_intermediate_values
plot_intermediate_values(study)
.. tab:: PyTorch
.. code-block:: python
...
study = trainer.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_intermediate_values
plot_intermediate_values(study)
Example plot as below. It is an interactive chart which you can zoom-in and zoom-out and select data points.
.. only:: html
.. raw:: html
<iframe src='../../../_static/hpovis/intermediate_values.html' height="400px" width="100%" scrolling='no'></iframe>
Plot the Hyperparameters in Parallel Coordinates
------------------------------------------------
You can plot the hyperparamters in parallel coordinates chart.
.. tabs::
.. tab:: Tensorflow
.. code-block:: python
...
study = model.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_parallel_coordinate
plot_parallel_coordinate(study)
.. tab:: PyTorch
.. code-block:: python
...
study = trainer.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_parallel_coordinate
plot_parallel_coordinate(study)
Example plot as below. It is an interactive chart which you can zoom-in and zoom-out and select data points.
.. only:: html
.. raw:: html
<iframe src='../../../_static/hpovis/parallel_coordinate.html' height="400px" width="100%" scrolling='no'></iframe>
Plot the Hyperparameter Contour
------------------------------------------------
You can plot the hyperparameter contour chart.
.. tabs::
.. tab:: Tensorflow
.. code-block:: python
...
study = model.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_contour
plot_contour(study)
.. tab:: PyTorch
.. code-block:: python
...
study = trainer.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_contour
plot_contour(study)
Example plot as below. It is an interactive chart which you can zoom-in and zoom-out and select data points.
.. only:: html
.. raw:: html
<iframe src='../../../_static/hpovis/contour.html' height="400px" width="100%" scrolling='no'></iframe>
Inspect Hyperparameter Importance by accuracy
---------------------------------------------
You can plot the hyperparameter importance according to their relationship to accuracy.
.. tabs::
.. tab:: Tensorflow
.. code-block:: python
...
study = model.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_param_importances
plot_param_importances(study)
.. tab:: PyTorch
.. code-block:: python
...
study = trainer.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_param_importances
plot_param_importances(study)
Example plot as below. It is an interactive chart which you can zoom-in and zoom-out and select data points.
.. only:: html
.. raw:: html
<iframe src='../../../_static/hpovis/param_importance.html' height="400px" width="100%" scrolling='no'></iframe>
Inspect Hyperparameter Importance by latency
--------------------------------------------
You can plot the hyperparameter importance according to their relationship to latency.
.. tabs::
.. tab:: Tensorflow
.. code-block:: python
...
study = model.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_param_importances
plot_param_importances(study, target=lambda t: t.duration.total_seconds(), target_name="duration")
.. tab:: PyTorch
.. code-block:: python
...
study = trainer.search_summary()
from bigdl.nano.automl.hpo.visualization import plot_param_importances
plot_param_importances(study, target=lambda t: t.duration.total_seconds(), target_name="duration")
Example plot as below. It is an interactive chart which you can zoom-in and zoom-out and select data points.
.. only:: html
.. raw:: html
<iframe src='../../../_static/hpovis/param_importance_latency.html' height="400px" width="100%" scrolling='no'></iframe>