LLM: Add decoder/layernorm unit tests (#10211)
* add decoder/layernorm unit tests * update tests * delete decoder tests * address comments * remove none type check * restore nonetype checks * delete nonetype checks; add decoder tests for Llama * add gc * deal with tuple output
This commit is contained in:
parent
9880ddfc17
commit
0dbce53464
3 changed files with 137 additions and 11 deletions
117
python/llm/test/inference_gpu/test_transformers_api_layernorm.py
Normal file
117
python/llm/test/inference_gpu/test_transformers_api_layernorm.py
Normal file
|
|
@ -0,0 +1,117 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import os
|
||||||
|
import pytest
|
||||||
|
import gc
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
|
||||||
|
from transformers import LlamaTokenizer, AutoTokenizer
|
||||||
|
|
||||||
|
device = os.environ['DEVICE']
|
||||||
|
print(f'Running on {device}')
|
||||||
|
|
||||||
|
PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
||||||
|
TEST_MODEL_LIST = [
|
||||||
|
("Falcon-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
|
||||||
|
]
|
||||||
|
|
||||||
|
class Test_Optimize_Gpu_Model:
|
||||||
|
def setup_method(self):
|
||||||
|
self.layer_outputs = []
|
||||||
|
self.pre_layer_outputs = []
|
||||||
|
|
||||||
|
def run_optimize_gpu_model(self, Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound):
|
||||||
|
with torch.inference_mode():
|
||||||
|
def pre_forward_hook(module, input, output, layer_name):
|
||||||
|
self.pre_layer_outputs.append(output)
|
||||||
|
|
||||||
|
def forward_hook(module, input, output, layer_name):
|
||||||
|
self.layer_outputs.append(output)
|
||||||
|
|
||||||
|
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
input_ids = tokenizer.encode(PROMPT, return_tensors="pt").to(device)
|
||||||
|
|
||||||
|
model = Model.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=False,
|
||||||
|
trust_remote_code=True)
|
||||||
|
model = model.to(device)
|
||||||
|
for layer_name, layer_module in model.named_modules():
|
||||||
|
if layer_name == layer_before_LayerNorm:
|
||||||
|
layer_module.register_forward_hook(
|
||||||
|
lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
|
||||||
|
output, layer_name))
|
||||||
|
if layer_name == LayerNorm_layer:
|
||||||
|
layer_module.register_forward_hook(
|
||||||
|
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
|
||||||
|
output, layer_name))
|
||||||
|
logits_base_model = (model(input_ids)).logits
|
||||||
|
# the list `layer_output` has only one element.
|
||||||
|
layer_tensor = self.layer_outputs.pop()
|
||||||
|
model.to('cpu')
|
||||||
|
|
||||||
|
opt_model = Model.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=True,
|
||||||
|
trust_remote_code=True)
|
||||||
|
opt_model = opt_model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
def replace_forward_hook(module, input, output, layer_name):
|
||||||
|
output = self.pre_layer_outputs[0]
|
||||||
|
return output
|
||||||
|
|
||||||
|
for layer_name, layer_module in opt_model.named_modules():
|
||||||
|
if layer_name == layer_before_LayerNorm:
|
||||||
|
layer_module.register_forward_hook(
|
||||||
|
lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
|
||||||
|
output, layer_name))
|
||||||
|
if layer_name == LayerNorm_layer:
|
||||||
|
layer_module.register_forward_hook(
|
||||||
|
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
|
||||||
|
output, layer_name))
|
||||||
|
logits_optimized_model = (opt_model(input_ids)).logits
|
||||||
|
# the list `layer_output` has only one element.
|
||||||
|
opt_layer_tensor = self.layer_outputs[0]
|
||||||
|
opt_model.to('cpu')
|
||||||
|
|
||||||
|
|
||||||
|
LayerNorm_output_diff = []
|
||||||
|
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
|
||||||
|
LayerNorm_output_diff.append(t1 - t2)
|
||||||
|
|
||||||
|
max_diff_tensor = [torch.max(item).item() for item in LayerNorm_output_diff]
|
||||||
|
print(max_diff_tensor)
|
||||||
|
torch.xpu.empty_cache()
|
||||||
|
del model
|
||||||
|
del opt_model
|
||||||
|
gc.collect()
|
||||||
|
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
|
||||||
|
def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
|
||||||
|
if Name == "Falcon-7B":
|
||||||
|
self.Falcon_7B_gpu_model(Name, Model, Tokenizer, model_path)
|
||||||
|
|
||||||
|
|
||||||
|
def Falcon_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
|
# currently only compare the output of the last LayerNorm layer.
|
||||||
|
layer_before_LayerNorm = "transformer.h.30"
|
||||||
|
LayerNorm_layer = "transformer.h.31.input_layernorm"
|
||||||
|
lower_bound = 0
|
||||||
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound)
|
||||||
|
|
@ -28,7 +28,8 @@ print(f'Running on {device}')
|
||||||
PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
||||||
TEST_MODEL_LIST = [
|
TEST_MODEL_LIST = [
|
||||||
("Qwen-7B-Chat", AutoModelForCausalLM, AutoTokenizer, os.environ.get('QWEN_7B_ORIGIN_PATH')),
|
("Qwen-7B-Chat", AutoModelForCausalLM, AutoTokenizer, os.environ.get('QWEN_7B_ORIGIN_PATH')),
|
||||||
("Mistral-7B-Instruct-v0.1", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH'))
|
("Mistral-7B-Instruct-v0.1", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH')),
|
||||||
|
("Llama2-7B", AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH'))
|
||||||
]
|
]
|
||||||
|
|
||||||
class Test_Optimize_Gpu_Model:
|
class Test_Optimize_Gpu_Model:
|
||||||
|
|
@ -91,16 +92,13 @@ class Test_Optimize_Gpu_Model:
|
||||||
opt_layer_tensor = self.layer_outputs[0]
|
opt_layer_tensor = self.layer_outputs[0]
|
||||||
opt_model.to('cpu')
|
opt_model.to('cpu')
|
||||||
|
|
||||||
|
|
||||||
MLP_output_diff = []
|
MLP_output_diff = []
|
||||||
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
|
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
|
||||||
if t1 is not None and t2 is not None:
|
if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
|
||||||
if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
|
MLP_output_diff.append(t1 - t2)
|
||||||
MLP_output_diff.append(t1 - t2)
|
else:
|
||||||
else:
|
for i, (t3, t4) in enumerate(zip(t1, t2)):
|
||||||
# 'past_key_value'is of type tuple as default.
|
MLP_output_diff.append(t3 - t4)
|
||||||
for i, (t3, t4) in enumerate(zip(t1, t2)):
|
|
||||||
MLP_output_diff.append(t3 - t4)
|
|
||||||
|
|
||||||
max_diff_tensor = [torch.max(item).item() for item in MLP_output_diff]
|
max_diff_tensor = [torch.max(item).item() for item in MLP_output_diff]
|
||||||
print(max_diff_tensor)
|
print(max_diff_tensor)
|
||||||
|
|
@ -116,8 +114,10 @@ class Test_Optimize_Gpu_Model:
|
||||||
self.Qwen_7B_gpu_model(Name, Model, Tokenizer, model_path)
|
self.Qwen_7B_gpu_model(Name, Model, Tokenizer, model_path)
|
||||||
elif Name == "Mistral-7B-Instruct-v0.1":
|
elif Name == "Mistral-7B-Instruct-v0.1":
|
||||||
self.Mistral_7B_Instruct_gpu_model(Name, Model, Tokenizer, model_path)
|
self.Mistral_7B_Instruct_gpu_model(Name, Model, Tokenizer, model_path)
|
||||||
|
elif Name == "Llama2-7B":
|
||||||
|
self.Llama2_7B_gpu_model(Name, Model, Tokenizer, model_path)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def Qwen_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Qwen_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
# currently only compare the output of the last mlp layer.
|
# currently only compare the output of the last mlp layer.
|
||||||
layer_before_MLP = "transformer.h.31.ln_2"
|
layer_before_MLP = "transformer.h.31.ln_2"
|
||||||
|
|
@ -130,4 +130,12 @@ class Test_Optimize_Gpu_Model:
|
||||||
layer_before_MLP = "model.layers.31.post_attention_layernorm"
|
layer_before_MLP = "model.layers.31.post_attention_layernorm"
|
||||||
MLP_layer = "model.layers.31.mlp"
|
MLP_layer = "model.layers.31.mlp"
|
||||||
lower_bound = 0
|
lower_bound = 0
|
||||||
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound)
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound)
|
||||||
|
|
||||||
|
def Llama2_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
|
# The tests are actually testing the mlp layer. We can't test the mlp layer directly
|
||||||
|
# since the original Llama2 code adds residual after the mlp layer, which differs from the implementation of bigdl
|
||||||
|
layer_before_Decoder = "model.layers.30"
|
||||||
|
Decoder_layer = "model.layers.31"
|
||||||
|
lower_bound = 5e-2
|
||||||
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, Decoder_layer, layer_before_Decoder, lower_bound)
|
||||||
|
|
|
||||||
|
|
@ -18,6 +18,7 @@ start=$(date "+%s")
|
||||||
# fi
|
# fi
|
||||||
# export OMP_NUM_THREADS=$THREAD_NUM
|
# export OMP_NUM_THREADS=$THREAD_NUM
|
||||||
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api.py -v -s
|
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api.py -v -s
|
||||||
|
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_layernorm.py -v -s
|
||||||
export BIGDL_LLM_XMX_DISABLED=1
|
export BIGDL_LLM_XMX_DISABLED=1
|
||||||
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_final_logits.py -v -s
|
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_final_logits.py -v -s
|
||||||
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_attention.py -v -s -k "not Mistral"
|
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_attention.py -v -s -k "not Mistral"
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue