diff --git a/python/llm/test/inference_gpu/test_transformers_api_layernorm.py b/python/llm/test/inference_gpu/test_transformers_api_layernorm.py new file mode 100644 index 00000000..0dbb4fe8 --- /dev/null +++ b/python/llm/test/inference_gpu/test_transformers_api_layernorm.py @@ -0,0 +1,117 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import os +import pytest +import gc + +import torch +from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel +from transformers import LlamaTokenizer, AutoTokenizer + +device = os.environ['DEVICE'] +print(f'Running on {device}') + +PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" +TEST_MODEL_LIST = [ + ("Falcon-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')) +] + +class Test_Optimize_Gpu_Model: + def setup_method(self): + self.layer_outputs = [] + self.pre_layer_outputs = [] + + def run_optimize_gpu_model(self, Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound): + with torch.inference_mode(): + def pre_forward_hook(module, input, output, layer_name): + self.pre_layer_outputs.append(output) + + def forward_hook(module, input, output, layer_name): + self.layer_outputs.append(output) + + tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True) + input_ids = tokenizer.encode(PROMPT, return_tensors="pt").to(device) + + model = Model.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=False, + trust_remote_code=True) + model = model.to(device) + for layer_name, layer_module in model.named_modules(): + if layer_name == layer_before_LayerNorm: + layer_module.register_forward_hook( + lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input, + output, layer_name)) + if layer_name == LayerNorm_layer: + layer_module.register_forward_hook( + lambda module, input, output, layer_name=layer_name: forward_hook(module, input, + output, layer_name)) + logits_base_model = (model(input_ids)).logits + # the list `layer_output` has only one element. + layer_tensor = self.layer_outputs.pop() + model.to('cpu') + + opt_model = Model.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True) + opt_model = opt_model.to(device) + + + def replace_forward_hook(module, input, output, layer_name): + output = self.pre_layer_outputs[0] + return output + + for layer_name, layer_module in opt_model.named_modules(): + if layer_name == layer_before_LayerNorm: + layer_module.register_forward_hook( + lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input, + output, layer_name)) + if layer_name == LayerNorm_layer: + layer_module.register_forward_hook( + lambda module, input, output, layer_name=layer_name: forward_hook(module, input, + output, layer_name)) + logits_optimized_model = (opt_model(input_ids)).logits + # the list `layer_output` has only one element. + opt_layer_tensor = self.layer_outputs[0] + opt_model.to('cpu') + + + LayerNorm_output_diff = [] + for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)): + LayerNorm_output_diff.append(t1 - t2) + + max_diff_tensor = [torch.max(item).item() for item in LayerNorm_output_diff] + print(max_diff_tensor) + torch.xpu.empty_cache() + del model + del opt_model + gc.collect() + assert all(max_diff <= lower_bound for max_diff in max_diff_tensor) + + @pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST) + def test_dynamic_functions(self, Name, Model, Tokenizer, model_path): + if Name == "Falcon-7B": + self.Falcon_7B_gpu_model(Name, Model, Tokenizer, model_path) + + + def Falcon_7B_gpu_model(self, Name, Model, Tokenizer, model_path): + # currently only compare the output of the last LayerNorm layer. + layer_before_LayerNorm = "transformer.h.30" + LayerNorm_layer = "transformer.h.31.input_layernorm" + lower_bound = 0 + self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound) \ No newline at end of file diff --git a/python/llm/test/inference_gpu/test_transformers_api_mlp.py b/python/llm/test/inference_gpu/test_transformers_api_mlp.py index 16431cba..1c01b259 100644 --- a/python/llm/test/inference_gpu/test_transformers_api_mlp.py +++ b/python/llm/test/inference_gpu/test_transformers_api_mlp.py @@ -28,7 +28,8 @@ print(f'Running on {device}') PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" TEST_MODEL_LIST = [ ("Qwen-7B-Chat", AutoModelForCausalLM, AutoTokenizer, os.environ.get('QWEN_7B_ORIGIN_PATH')), - ("Mistral-7B-Instruct-v0.1", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH')) + ("Mistral-7B-Instruct-v0.1", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH')), + ("Llama2-7B", AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')) ] class Test_Optimize_Gpu_Model: @@ -91,16 +92,13 @@ class Test_Optimize_Gpu_Model: opt_layer_tensor = self.layer_outputs[0] opt_model.to('cpu') - MLP_output_diff = [] for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)): - if t1 is not None and t2 is not None: - if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor): - MLP_output_diff.append(t1 - t2) - else: - # 'past_key_value'is of type tuple as default. - for i, (t3, t4) in enumerate(zip(t1, t2)): - MLP_output_diff.append(t3 - t4) + if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor): + MLP_output_diff.append(t1 - t2) + else: + for i, (t3, t4) in enumerate(zip(t1, t2)): + MLP_output_diff.append(t3 - t4) max_diff_tensor = [torch.max(item).item() for item in MLP_output_diff] print(max_diff_tensor) @@ -116,8 +114,10 @@ class Test_Optimize_Gpu_Model: self.Qwen_7B_gpu_model(Name, Model, Tokenizer, model_path) elif Name == "Mistral-7B-Instruct-v0.1": self.Mistral_7B_Instruct_gpu_model(Name, Model, Tokenizer, model_path) + elif Name == "Llama2-7B": + self.Llama2_7B_gpu_model(Name, Model, Tokenizer, model_path) + - def Qwen_7B_gpu_model(self, Name, Model, Tokenizer, model_path): # currently only compare the output of the last mlp layer. layer_before_MLP = "transformer.h.31.ln_2" @@ -130,4 +130,12 @@ class Test_Optimize_Gpu_Model: layer_before_MLP = "model.layers.31.post_attention_layernorm" MLP_layer = "model.layers.31.mlp" lower_bound = 0 - self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound) \ No newline at end of file + self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound) + + def Llama2_7B_gpu_model(self, Name, Model, Tokenizer, model_path): + # The tests are actually testing the mlp layer. We can't test the mlp layer directly + # since the original Llama2 code adds residual after the mlp layer, which differs from the implementation of bigdl + layer_before_Decoder = "model.layers.30" + Decoder_layer = "model.layers.31" + lower_bound = 5e-2 + self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, Decoder_layer, layer_before_Decoder, lower_bound) diff --git a/python/llm/test/run-llm-inference-tests-gpu.sh b/python/llm/test/run-llm-inference-tests-gpu.sh index 130d58d3..ea1abb51 100644 --- a/python/llm/test/run-llm-inference-tests-gpu.sh +++ b/python/llm/test/run-llm-inference-tests-gpu.sh @@ -18,6 +18,7 @@ start=$(date "+%s") # fi # export OMP_NUM_THREADS=$THREAD_NUM pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api.py -v -s +pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_layernorm.py -v -s export BIGDL_LLM_XMX_DISABLED=1 pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_final_logits.py -v -s pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_attention.py -v -s -k "not Mistral"