166 lines
No EOL
6.1 KiB
Python
166 lines
No EOL
6.1 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
import re
|
|
import torch
|
|
from typing import Dict, List, Tuple
|
|
|
|
from vibevoice.modular.configuration_vibevoice import (
|
|
VibeVoiceConfig
|
|
)
|
|
from vibevoice.modular.modeling_vibevoice import VibeVoiceForConditionalGeneration
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
def convert_vibevoice_nnscaler_checkpoint_to_hf(
|
|
checkpoint_path: str,
|
|
pytorch_dump_folder_path: str,
|
|
config_path: str = None,
|
|
):
|
|
"""
|
|
Convert a nnscaler VibeVoice checkpoint to HuggingFace format.
|
|
Supports both regular checkpoints and tensor parallel checkpoints.
|
|
"""
|
|
|
|
# Load regular checkpoint
|
|
logger.info(f"Loading regular checkpoint from {checkpoint_path}")
|
|
checkpoint = torch.load(checkpoint_path, map_location="cpu") # ['model', 'optimizer', 'lr_scheduler', 'train_status', 'train_args', 'rng_states', 'nnscaler', 'dataloader']
|
|
|
|
# config = checkpoint['train_args']
|
|
init_config_name = checkpoint['train_args']['vars']['model_args']['config_path']['relative_path']
|
|
pretrained_name = checkpoint['train_args']['vars']['data_args']['tokenizer_path']
|
|
|
|
init_config_path = Path(__file__).parent.parent / 'configs' / init_config_name.split('/')[-1]
|
|
if init_config_path.exists():
|
|
logger.info(f"Loading initial config from {init_config_path}")
|
|
with open(init_config_path, 'r') as f:
|
|
init_config = json.load(f)
|
|
else:
|
|
raise FileNotFoundError(f"Initial config file {init_config_path} not found. Please provide a valid path.")
|
|
|
|
tie_word_embeddings = init_config['decoder_config'].get('tie_word_embeddings', True)
|
|
logger.info(f"Tie word embeddings: {tie_word_embeddings}")
|
|
|
|
init_config['decoder_config']['use_cache'] = True
|
|
config = VibeVoiceConfig(**init_config, tie_word_embeddings=tie_word_embeddings)
|
|
|
|
# # Extract the model state dict
|
|
model_state_dict = {k.replace('model.model.', 'model.'): v for k, v in checkpoint["model"].items() if k.startswith('model.model.')}
|
|
if not tie_word_embeddings and 'model.lm_head.weight' in checkpoint["model"].keys():
|
|
# If not tying weights, we need to add the lm_head weight separately
|
|
model_state_dict['lm_head.weight'] = checkpoint["model"]['model.lm_head.weight']
|
|
|
|
# Override with provided config if available
|
|
if config_path:
|
|
logger.info(f"Loading config from {config_path}")
|
|
with open(config_path, 'r') as f:
|
|
config_dict = json.load(f)
|
|
config = VibeVoiceConfig.from_dict(config_dict)
|
|
|
|
# Set the default dtype to bfloat16 before creating the model
|
|
original_dtype = torch.get_default_dtype()
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
|
|
# Create the HuggingFace model
|
|
logger.info("Creating HuggingFace VibeVoiceForConditionalGeneration model")
|
|
model = VibeVoiceForConditionalGeneration(config)
|
|
|
|
# Restore original dtype
|
|
torch.set_default_dtype(original_dtype)
|
|
|
|
# Load the state dict
|
|
logger.info("Loading weights into model")
|
|
missing_keys, unexpected_keys = model.load_state_dict(model_state_dict, strict=False)
|
|
|
|
if missing_keys:
|
|
logger.warning(f"Missing keys: {missing_keys}")
|
|
if unexpected_keys:
|
|
logger.warning(f"Unexpected keys: {unexpected_keys}")
|
|
|
|
# Create output directory
|
|
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
|
|
|
|
# Save the model and config
|
|
logger.info(f"Saving model to {pytorch_dump_folder_path}")
|
|
|
|
# Save config
|
|
config.save_pretrained(pytorch_dump_folder_path)
|
|
|
|
# Save VibeVoiceProcessor configuration
|
|
logger.info("Saving VibeVoiceProcessor configuration")
|
|
processor_config = {
|
|
"processor_class": "VibeVoiceProcessor",
|
|
"speech_tok_compress_ratio": 3200,
|
|
"db_normalize": True,
|
|
# Audio processor configuration
|
|
"audio_processor": {
|
|
"feature_extractor_type": "VibeVoiceTokenizerProcessor",
|
|
"sampling_rate": 24000,
|
|
"normalize_audio": True,
|
|
"target_dB_FS": -25,
|
|
"eps": 1e-6,
|
|
},
|
|
"language_model_pretrained_name": pretrained_name,
|
|
}
|
|
|
|
processor_config_path = os.path.join(pytorch_dump_folder_path, "preprocessor_config.json")
|
|
with open(processor_config_path, 'w') as f:
|
|
json.dump(processor_config, f, indent=2)
|
|
logger.info(f"Saved processor config to {processor_config_path}")
|
|
|
|
# Save model with sharding
|
|
# save_pretrained handles tied weights automatically
|
|
logger.info("Saving model weights with sharding...")
|
|
model.save_pretrained(
|
|
pytorch_dump_folder_path,
|
|
max_shard_size="2GB", # Set maximum size for each shard
|
|
safe_serialization=True # Ensure saving in .safetensors format
|
|
)
|
|
logger.info(f"Model weights saved to {pytorch_dump_folder_path}")
|
|
|
|
logger.info("Conversion complete!")
|
|
|
|
# Verify the saved model can be loaded
|
|
logger.info("Verifying saved model...")
|
|
loaded_model = VibeVoiceForConditionalGeneration.from_pretrained(pytorch_dump_folder_path)
|
|
logger.info("Model successfully loaded from saved checkpoint!")
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--nnscaler_checkpoint_path",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the fairseq checkpoint (.pt file). For tensor parallel checkpoints, "
|
|
"provide any one of the part files (e.g., checkpoint_1_5000-model_part-0.pt), "
|
|
"and the script will automatically detect and merge all parts.",
|
|
)
|
|
parser.add_argument(
|
|
"--pytorch_dump_folder_path",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the output PyTorch model directory",
|
|
)
|
|
parser.add_argument(
|
|
"--config_path",
|
|
type=str,
|
|
default=None,
|
|
help="Optional path to a config JSON file to override extracted config",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
convert_vibevoice_nnscaler_checkpoint_to_hf(
|
|
args.nnscaler_checkpoint_path,
|
|
args.pytorch_dump_folder_path,
|
|
args.config_path,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |