108 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
"""
 | 
						|
Usage:
 | 
						|
   python make_table.py <input_dir>
 | 
						|
"""
 | 
						|
 | 
						|
import logging
 | 
						|
from pytablewriter import MarkdownTableWriter, LatexTableWriter
 | 
						|
import os
 | 
						|
import json
 | 
						|
import sys
 | 
						|
import csv
 | 
						|
import datetime
 | 
						|
from harness_to_leaderboard import task_to_metric
 | 
						|
 | 
						|
 | 
						|
logging.basicConfig(level=logging.INFO)
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
def make_table(result_dict):
 | 
						|
    """Generate table of results."""
 | 
						|
    md_writer = MarkdownTableWriter()
 | 
						|
    latex_writer = LatexTableWriter()
 | 
						|
    md_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
 | 
						|
    latex_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
 | 
						|
 | 
						|
    tasks = ["arc", "hellaswag", "mmlu", "truthfulqa", "winogrande", "gsm8k"]
 | 
						|
    values = []
 | 
						|
    for model, model_results in result_dict.items():
 | 
						|
        for precision, prec_results in model_results.items():
 | 
						|
            value = [model, precision]
 | 
						|
            for task in tasks:
 | 
						|
 | 
						|
                task_results = prec_results.get(task, None)
 | 
						|
                if task_results is None:
 | 
						|
                    value.append("")
 | 
						|
                else:
 | 
						|
                    m = task_to_metric[task]
 | 
						|
                    results = task_results["results"]
 | 
						|
                    if len(results) > 1:
 | 
						|
                        result = results[task]
 | 
						|
                    else:
 | 
						|
                        result = list(results.values())[0]
 | 
						|
                    value.append("%.2f" % (result[m] * 100))
 | 
						|
            values.append(value)
 | 
						|
            model = ""    
 | 
						|
            precision = ""
 | 
						|
        
 | 
						|
    md_writer.value_matrix = values
 | 
						|
    latex_writer.value_matrix = values
 | 
						|
 | 
						|
    # todo: make latex table look good
 | 
						|
    # print(latex_writer.dumps())
 | 
						|
 | 
						|
    return md_writer.dumps()
 | 
						|
 | 
						|
 | 
						|
def merge_results(path):
 | 
						|
    # loop dirs and subdirs in results dir
 | 
						|
    # for each dir, load json files
 | 
						|
    print('Read from', path)
 | 
						|
    merged_results = dict()
 | 
						|
    for dirpath, dirnames, filenames in os.walk(path):
 | 
						|
        # skip dirs without files
 | 
						|
        if not filenames:
 | 
						|
            continue
 | 
						|
        for filename in sorted([f for f in filenames if f.endswith("result.json")]):
 | 
						|
            path = os.path.join(dirpath, filename)
 | 
						|
            model, device, precision, task = dirpath.split('/')[-4:]
 | 
						|
            with open(path, "r") as f:
 | 
						|
                result_dict = json.load(f)
 | 
						|
            if model not in merged_results:
 | 
						|
                merged_results[model] = dict()
 | 
						|
            if precision not in merged_results[model]:
 | 
						|
                merged_results[model][precision] = dict()
 | 
						|
            merged_results[model][precision][task] = result_dict
 | 
						|
    return merged_results
 | 
						|
 | 
						|
 | 
						|
def main(*args):
 | 
						|
    if len(args) > 1:
 | 
						|
        input_path = args[1]
 | 
						|
    else:
 | 
						|
        raise ValueError("Input path is required")
 | 
						|
 | 
						|
    merged_results = merge_results(input_path)
 | 
						|
    print(make_table(merged_results))
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    # when running from the harness, the first argument is the script name
 | 
						|
    # you must name the second argument and the third argument(optional) to be the input_dir and output_dir
 | 
						|
    main(*sys.argv)
 |