80 lines
		
	
	
		
			No EOL
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			No EOL
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
from bigdl.llm.utils import get_avx_flags
 | 
						|
from bigdl.llm.langchain.embeddings import BigdlNativeEmbeddings
 | 
						|
from bigdl.llm.langchain.llms import BigdlNativeLLM
 | 
						|
import pytest
 | 
						|
from unittest import TestCase
 | 
						|
import os
 | 
						|
 | 
						|
 | 
						|
class Test_Models_Basics(TestCase):
 | 
						|
    def setUp(self):
 | 
						|
        self.llama_model_path = os.environ.get('LLAMA_INT4_CKPT_PATH')
 | 
						|
        self.bloom_model_path = os.environ.get('BLOOM_INT4_CKPT_PATH')
 | 
						|
        self.gptneox_model_path = os.environ.get('GPTNEOX_INT4_CKPT_PATH')
 | 
						|
        thread_num = os.environ.get('THREAD_NUM')
 | 
						|
        if thread_num is not None:
 | 
						|
            self.n_threads = int(thread_num)
 | 
						|
        else:
 | 
						|
            self.n_threads = 2         
 | 
						|
 | 
						|
        
 | 
						|
    def test_langchain_llm_embedding_llama(self):
 | 
						|
        bigdl_embeddings = BigdlNativeEmbeddings(
 | 
						|
            model_path=self.llama_model_path,
 | 
						|
            model_family="llama")
 | 
						|
        text = "This is a test document."
 | 
						|
        query_result = bigdl_embeddings.embed_query(text)
 | 
						|
        doc_result = bigdl_embeddings.embed_documents([text])
 | 
						|
    
 | 
						|
    def test_langchain_llm_embedding_gptneox(self):
 | 
						|
        bigdl_embeddings = BigdlNativeEmbeddings(
 | 
						|
            model_path=self.gptneox_model_path,
 | 
						|
            model_family="gptneox")
 | 
						|
        text = "This is a test document."
 | 
						|
        query_result = bigdl_embeddings.embed_query(text)
 | 
						|
        doc_result = bigdl_embeddings.embed_documents([text])
 | 
						|
        
 | 
						|
    def test_langchain_llm_llama(self):
 | 
						|
        llm = BigdlNativeLLM(
 | 
						|
            model_path=self.llama_model_path, 
 | 
						|
            max_tokens=32,
 | 
						|
            n_threads=self.n_threads)
 | 
						|
        question = "What is AI?"
 | 
						|
        result = llm(question)
 | 
						|
        
 | 
						|
    def test_langchain_llm_gptneox(self):
 | 
						|
        llm = BigdlNativeLLM(
 | 
						|
            model_path=self.gptneox_model_path,
 | 
						|
            model_family="gptneox", 
 | 
						|
            max_tokens=32,
 | 
						|
            n_threads=self.n_threads)
 | 
						|
        question = "What is AI?"
 | 
						|
        result = llm(question)
 | 
						|
        
 | 
						|
    def test_langchain_llm_bloom(self):
 | 
						|
        llm = BigdlNativeLLM(
 | 
						|
            model_path=self.bloom_model_path, 
 | 
						|
            model_family="bloom",
 | 
						|
            max_tokens=32,
 | 
						|
            n_threads=self.n_threads)
 | 
						|
        question = "What is AI?"
 | 
						|
        result = llm(question)
 | 
						|
        
 | 
						|
if __name__ == '__main__':
 | 
						|
    pytest.main([__file__]) |