ipex-llm/python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal/bce-embedding.py
2024-12-03 09:46:15 +08:00

74 lines
2.5 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import time
import torch
import argparse
from ipex_llm.transformers.npu_model import EmbeddingModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `generate()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="maidalun1020/bce-embedding-base_v1",
help="The huggingface repo id for the bce-embedding model to be downloaded"
", or the path to the huggingface checkpoint folder",
)
parser.add_argument('--prompt', type=str, default="'sentence_0', 'sentence_1'",
help='Prompt to infer')
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--save-directory", type=str,
required=True,
help="The path of folder to save converted model, "
"If path not exists, lowbit model will be saved there. "
"Else, lowbit model will be loaded.",
)
args = parser.parse_args()
model_path = args.repo_id_or_model_path
model = EmbeddingModel(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager",
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
transpose_value_cache=not args.disable_transpose_value_cache,
save_directory=args.save_directory
)
# list of sentences
split_items = args.prompt.split(',')
sentences = [item.strip().strip("'") for item in split_items]
# extract embeddings
st = time.time()
embeddings = model.encode(sentences)
end = time.time()
print(f'Inference time: {end-st} s')
print(embeddings)