* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
78 lines
3.4 KiB
Python
78 lines
3.4 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import time
|
|
import argparse
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
from modelscope import AutoTokenizer
|
|
|
|
# you could tune the prompt based on your own model,
|
|
BAICHUAN_PROMPT_FORMAT = "<human>{prompt} <bot>"
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="baichuan-inc/Baichuan2-7B-Chat",
|
|
help='The ModelScope repo id for the Baichuan model to be downloaded to be downloaded'
|
|
', or the path to the ModelScope checkpoint folder')
|
|
parser.add_argument('--save-path', type=str, default=None,
|
|
help='The path to save the low-bit model.')
|
|
parser.add_argument('--load-path', type=str, default=None,
|
|
help='The path to load the low-bit model.')
|
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
load_path = args.load_path
|
|
if load_path:
|
|
model = AutoModelForCausalLM.load_low_bit(load_path, trust_remote_code=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(load_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
trust_remote_code=True,
|
|
model_hub='modelscope')
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
save_path = args.save_path
|
|
if save_path:
|
|
model.save_low_bit(save_path)
|
|
tokenizer.save_pretrained(save_path)
|
|
print(f"Model and tokenizer are saved to {save_path}")
|
|
|
|
# please save/load model before you run it on GPU
|
|
model = model.to('xpu')
|
|
|
|
# Generate predicted tokens
|
|
with torch.inference_mode():
|
|
prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
|
# ipex model needs a warmup, then inference time can be accurate
|
|
output = model.generate(input_ids,
|
|
max_new_tokens=args.n_predict)
|
|
|
|
st = time.time()
|
|
output = model.generate(input_ids,
|
|
max_new_tokens=args.n_predict)
|
|
torch.xpu.synchronize()
|
|
end = time.time()
|
|
output = output.cpu()
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
print(f'Inference time: {end-st} s')
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(output_str)
|