* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			74 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# this code is to support converting of model in load bit
 | 
						|
# for performance tests using load_low_bit
 | 
						|
 | 
						|
import omegaconf
 | 
						|
import time
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import gc
 | 
						|
 | 
						|
from run import LLAMA_IDS, CHATGLM_IDS, LLAVA_IDS, get_model_path
 | 
						|
 | 
						|
current_dir = os.path.dirname(os.path.realpath(__file__))
 | 
						|
 | 
						|
def save_model_in_low_bit(repo_id,
 | 
						|
                          local_model_hub,
 | 
						|
                          low_bit):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                          trust_remote_code=True, use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
						|
                                                     use_cache=True).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAVA_IDS:
 | 
						|
        llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
 | 
						|
        sys.path.append(rf"{llava_repo_dir}")
 | 
						|
        from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                          trust_remote_code=True, use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
						|
                                                     trust_remote_code=True, use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    end = time.perf_counter()
 | 
						|
    print(">> loading of and converting of model costs {}s".format(end - st))
 | 
						|
 | 
						|
    model.save_low_bit(model_path+'-'+low_bit)
 | 
						|
    tokenizer.save_pretrained(model_path+'-'+low_bit)
 | 
						|
 | 
						|
    del model
 | 
						|
    gc.collect()
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    from omegaconf import OmegaConf
 | 
						|
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
						|
 | 
						|
    for model in conf.repo_id:
 | 
						|
        save_model_in_low_bit(repo_id=model,
 | 
						|
                              local_model_hub=conf['local_model_hub'],
 | 
						|
                              low_bit=conf['low_bit'])
 |