ipex-llm/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2/chat.py
Jinhe 164f47adbd
MiniCPM-V-2 & MiniCPM-Llama3-V-2_5 example updates (#11988)
* minicpm example updates

* --stream
2024-09-03 17:02:06 +08:00

207 lines
7.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List, Tuple, Optional, Union
import math
import timm
import torch
import torch.nn.functional as F
# patched: `timm` has limited support for XPU backend, so we need to use CPU as a workaround
def resample_abs_pos_embed(
posemb: torch.Tensor,
new_size: List[int],
old_size: Optional[List[int]] = None,
num_prefix_tokens: int = 1,
interpolation: str = 'bicubic',
antialias: bool = True,
verbose: bool = False,
):
# sort out sizes, assume square if old size not provided
num_pos_tokens = posemb.shape[1]
num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens
if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]:
return posemb
if old_size is None:
hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens))
old_size = hw, hw
if num_prefix_tokens:
posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:]
else:
posemb_prefix, posemb = None, posemb
# do the interpolation
embed_dim = posemb.shape[-1]
orig_dtype = posemb.dtype
posemb = posemb.float() # interpolate needs float32
posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2)
#posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias)
posemb = F.interpolate(posemb.to("cpu"), size=new_size, mode=interpolation, antialias=antialias).to(posemb.device)
posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim)
posemb = posemb.to(orig_dtype)
# add back extra (class, etc) prefix tokens
if posemb_prefix is not None:
posemb = torch.cat([posemb_prefix, posemb], dim=1)
if not torch.jit.is_scripting() and verbose:
_logger.info(f'Resized position embedding: {old_size} to {new_size}.')
return posemb
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
if self.pos_embed is None:
return x.view(x.shape[0], -1, x.shape[-1])
if self.dynamic_img_size:
B, H, W, C = x.shape
pos_embed = resample_abs_pos_embed(
self.pos_embed,
(H, W),
num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
)
x = x.view(B, -1, C)
else:
pos_embed = self.pos_embed
to_cat = []
if self.cls_token is not None:
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
if self.reg_token is not None:
to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
if self.no_embed_class:
# deit-3, updated JAX (big vision)
# position embedding does not overlap with class token, add then concat
x = x + pos_embed
if to_cat:
x = torch.cat(to_cat + [x], dim=1)
else:
# original timm, JAX, and deit vit impl
# pos_embed has entry for class token, concat then add
if to_cat:
x = torch.cat(to_cat + [x], dim=1)
x = x + pos_embed
return self.pos_drop(x)
setattr(timm.models.VisionTransformer, "_pos_embed", _pos_embed)
import os
import time
import argparse
import requests
import torch
from PIL import Image
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-V-2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2",
help='The huggingface repo id for the openbmb/MiniCPM-V-2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--stream', action='store_true',
help='Whether to chat in streaming mode')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModel.from_pretrained(model_path,
load_in_low_bit="asym_int4",
optimize_model=True,
trust_remote_code=True,
use_cache=True,
modules_to_not_convert=["vpm", "resampler"])
model = model.half().to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model.eval()
query = args.prompt
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
else:
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
# Generate predicted tokens
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2/blob/main/README.md
msgs = [{'role': 'user', 'content': args.prompt}]
# ipex_llm model needs a warmup, then inference time can be accurate
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=False,
temperature=0.7
)
if args.stream:
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=False,
temperature=0.7
)
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Stream Chat Output', '-'*20)
for new_text in res:
print(new_text, flush=True, end='')
else:
st = time.time()
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=False,
temperature=0.7
)
torch.xpu.synchronize()
end = time.time()
print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Chat Output', '-'*20)
print(res)