* Add C-Eval HTML report * Fix C-Eval workflow pr trigger path * Fix C-Eval workflow typos * Add permissions to C-Eval workflow * Fix C-Eval workflow typo * Add pandas dependency * Fix C-Eval workflow typo
		
			
				
	
	
		
			94 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			94 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import os
 | 
						|
import pdb
 | 
						|
import sys
 | 
						|
import csv
 | 
						|
import json
 | 
						|
import datetime
 | 
						|
import pandas as pd
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    result_path = sys.argv[1]
 | 
						|
    output_path = sys.argv[2]
 | 
						|
 | 
						|
    column_size = [25, 15, 10, 18, 15, 10, 10, 10]
 | 
						|
    pad_string = lambda x, l: [i.ljust(j) for i, j in zip(x, l)]
 | 
						|
    column_names = ["Model Name", "Precision", "STEM", "Social Science", "Humanities", "Other", "Hard", "Average"]
 | 
						|
 | 
						|
    print(f'\nDumping results for C-Eval score:\n')
 | 
						|
    print(' '.join(pad_string(column_names, column_size)))
 | 
						|
    print()
 | 
						|
 | 
						|
    file_lst = os.listdir(result_path)
 | 
						|
    file_lst = [f'{result_path}/{i}' for i in file_lst]
 | 
						|
 | 
						|
    organized_dict = {}   # {'Qwen-7B': {'sym_int4': [], 'mixed_fp4': }}
 | 
						|
    for file in file_lst:
 | 
						|
        # Read the JSON file
 | 
						|
        with open(file, 'r') as file:
 | 
						|
            data = json.load(file)
 | 
						|
 | 
						|
            result_lst = [data['Model Name'], data['Precision']]
 | 
						|
 | 
						|
            result_lst += data['Results']
 | 
						|
 | 
						|
            # store in the organized dictionary
 | 
						|
            try:
 | 
						|
                organized_dict[data['Model Name']][data['Precision']] = result_lst
 | 
						|
            except:
 | 
						|
                organized_dict[data['Model Name']] = {}
 | 
						|
                organized_dict[data['Model Name']][data['Precision']] = result_lst
 | 
						|
 | 
						|
    # define the print precision order
 | 
						|
    model_order = ['chatglm2-6b', 'chinese-llama2-7b', 'Qwen-7B-Chat']
 | 
						|
    precision_order = ['sym_int4', 'fp8_e5m2']
 | 
						|
    
 | 
						|
    # print the results
 | 
						|
    for model_name in organized_dict.keys():
 | 
						|
        for precision in precision_order:
 | 
						|
            try:
 | 
						|
                # print the result
 | 
						|
                print(' '.join(pad_string(organized_dict[model_name][precision], column_size)))
 | 
						|
            except KeyError:
 | 
						|
                pass
 | 
						|
        # separate between models
 | 
						|
        print()
 | 
						|
    
 | 
						|
    # initialize the csv file
 | 
						|
    current_date = datetime.datetime.now().strftime("%Y-%m-%d")
 | 
						|
    file_name = f'results_{current_date}.csv'
 | 
						|
    file_name = os.path.join(output_path, file_name) if output_path else file_name
 | 
						|
    print('Writing to', file_name)
 | 
						|
 | 
						|
    with open(file_name, mode='w', newline='') as csv_file:
 | 
						|
        writer = csv.writer(csv_file)
 | 
						|
        
 | 
						|
        headers = ["Model Name", "Precision", 'STEM', 'Social Science', 'Humanities', 'Other', 'Hard', 'Average']
 | 
						|
        writer.writerow(headers)
 | 
						|
 | 
						|
        # print the results
 | 
						|
        for model_name in model_order:
 | 
						|
            for precision in precision_order:
 | 
						|
                try:
 | 
						|
                    # write the result to the csv row
 | 
						|
                    writer.writerow(organized_dict[model_name][precision])
 | 
						|
                except KeyError:
 | 
						|
                    writer.writerow([model_name, precision]+[pd.NA for i in range(len(headers[2:]))])
 | 
						|
 | 
						|
 |