* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
98 lines
3.5 KiB
Python
98 lines
3.5 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from ipex_llm.langchain.embeddings import *
|
|
from ipex_llm.langchain.llms import *
|
|
import pytest
|
|
from unittest import TestCase
|
|
import os
|
|
|
|
|
|
class Test_Models_Basics(TestCase):
|
|
def setUp(self):
|
|
self.llama_model_path = os.environ.get('LLAMA_INT4_CKPT_PATH')
|
|
self.bloom_model_path = os.environ.get('BLOOM_INT4_CKPT_PATH')
|
|
self.gptneox_model_path = os.environ.get('GPTNEOX_INT4_CKPT_PATH')
|
|
self.starcoder_model_path = os.environ.get('STARCODER_INT4_CKPT_PATH')
|
|
thread_num = os.environ.get('THREAD_NUM')
|
|
if thread_num is not None:
|
|
self.n_threads = int(thread_num)
|
|
else:
|
|
self.n_threads = 2
|
|
|
|
|
|
def test_langchain_llm_embedding_llama(self):
|
|
bigdl_embeddings = LlamaEmbeddings(
|
|
model_path=self.llama_model_path)
|
|
text = "This is a test document."
|
|
query_result = bigdl_embeddings.embed_query(text)
|
|
doc_result = bigdl_embeddings.embed_documents([text])
|
|
|
|
def test_langchain_llm_embedding_gptneox(self):
|
|
bigdl_embeddings = GptneoxEmbeddings(
|
|
model_path=self.gptneox_model_path)
|
|
text = "This is a test document."
|
|
query_result = bigdl_embeddings.embed_query(text)
|
|
doc_result = bigdl_embeddings.embed_documents([text])
|
|
|
|
def test_langchain_llm_embedding_bloom(self):
|
|
bigdl_embeddings = BloomEmbeddings(
|
|
model_path=self.bloom_model_path)
|
|
text = "This is a test document."
|
|
query_result = bigdl_embeddings.embed_query(text)
|
|
doc_result = bigdl_embeddings.embed_documents([text])
|
|
|
|
def test_langchain_llm_embedding_starcoder(self):
|
|
bigdl_embeddings = StarcoderEmbeddings(
|
|
model_path=self.starcoder_model_path)
|
|
text = "This is a test document."
|
|
query_result = bigdl_embeddings.embed_query(text)
|
|
doc_result = bigdl_embeddings.embed_documents([text])
|
|
|
|
def test_langchain_llm_llama(self):
|
|
llm = LlamaLLM(
|
|
model_path=self.llama_model_path,
|
|
max_tokens=32,
|
|
n_threads=self.n_threads)
|
|
question = "What is AI?"
|
|
result = llm(question)
|
|
|
|
def test_langchain_llm_gptneox(self):
|
|
llm = GptneoxLLM(
|
|
model_path=self.gptneox_model_path,
|
|
max_tokens=32,
|
|
n_threads=self.n_threads)
|
|
question = "What is AI?"
|
|
result = llm(question)
|
|
|
|
def test_langchain_llm_bloom(self):
|
|
llm = BloomLLM(
|
|
model_path=self.bloom_model_path,
|
|
max_tokens=32,
|
|
n_threads=self.n_threads)
|
|
question = "What is AI?"
|
|
result = llm(question)
|
|
|
|
def test_langchain_llm_starcoder(self):
|
|
llm = StarcoderLLM(
|
|
model_path=self.starcoder_model_path,
|
|
max_tokens=32,
|
|
n_threads=self.n_threads)
|
|
question = "What is AI?"
|
|
result = llm(question)
|
|
|
|
if __name__ == '__main__':
|
|
pytest.main([__file__])
|