ipex-llm/python/llm/dev/benchmark/harness/make_table_results.py
yb-peng b4dc33def6 In harness-evaluation workflow, add statistical tables (#10118)
* chnage storage

* fix typo

* change label

* change label to arc03

* change needs in the last step

* add generate csv in harness/make_table_results.py

* modify needs in the last job

* add csv to html

* mfix path issue in llm-harness-summary-nightly

* modify output_path

* modify args in make_table_results.py

* modify make table command in summary

* change pr env label

* remove irrelevant code in summary; add set output path step; add limit in harness run

* re-organize code structure

* modify limit in run harness

* modify csv_to_html input path

* modify needs in summary-nightly
2024-02-08 19:01:05 +08:00

133 lines
4.8 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Usage:
python make_table_results.py <input_dir>
"""
import logging
from pytablewriter import MarkdownTableWriter, LatexTableWriter
import os
import json
import sys
import csv
import datetime
from harness_to_leaderboard import task_to_metric
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def make_table(result_dict):
"""Generate table of results."""
md_writer = MarkdownTableWriter()
latex_writer = LatexTableWriter()
md_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
latex_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
tasks = ["arc", "hellaswag", "mmlu", "truthfulqa", "winogrande", "gsm8k"]
values = []
for model, model_results in result_dict.items():
for precision, prec_results in model_results.items():
value = [model, precision]
for task in tasks:
task_results = prec_results.get(task, None)
if task_results is None:
value.append("")
else:
m = task_to_metric[task]
results = task_results["results"]
if len(results) > 1:
result = results[task]
else:
result = list(results.values())[0]
value.append("%.2f" % (result[m] * 100))
values.append(value)
model = ""
precision = ""
md_writer.value_matrix = values
latex_writer.value_matrix = values
# todo: make latex table look good
# print(latex_writer.dumps())
return md_writer.dumps()
def make_csv(result_dict, output_path=None):
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
file_name = f'results_{current_date}.csv'
full_path = os.path.join(output_path, file_name) if output_path else file_name
print('Writing to', full_path)
file_name = full_path
headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]
with open(file_name, mode='w', newline='') as csv_file:
writer = csv.writer(csv_file)
writer.writerow(headers)
index = 0
for model, model_results in result_dict.items():
for precision, prec_results in model_results.items():
row = [index, model, precision]
for task in headers[3:]:
task_results = prec_results.get(task.lower(), None)
if task_results is None:
row.append("")
else:
m = task_to_metric[task.lower()]
results = task_results["results"]
result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
row.append("%.2f" % (result[m] * 100))
writer.writerow(row)
index += 1
def merge_results(args):
# loop dirs and subdirs in results dir
# for each dir, load json files
path = args[1]
print('Read from', path)
merged_results = dict()
for dirpath, dirnames, filenames in os.walk(sys.argv[1]):
# skip dirs without files
if not filenames:
continue
for filename in sorted([f for f in filenames if f.endswith("result.json")]):
path = os.path.join(dirpath, filename)
model, device, precision, task = dirpath.split('/')[-4:]
with open(path, "r") as f:
result_dict = json.load(f)
if model not in merged_results:
merged_results[model] = dict()
if precision not in merged_results[model]:
merged_results[model][precision] = dict()
merged_results[model][precision][task] = result_dict
# args[2] is the output path
make_csv(merged_results, args[2])
return merged_results
def main(*args):
merged_results = merge_results(args)
print(make_table(merged_results))
if __name__ == "__main__":
# when running from the harness, the first argument is the script name
# you must name the second argument and the third argument to be the input_dir and output_dir
main(*sys.argv)