ipex-llm/python/llm/dev/benchmark/harness/harness_csv_to_html.py
yb-peng b4dc33def6 In harness-evaluation workflow, add statistical tables (#10118)
* chnage storage

* fix typo

* change label

* change label to arc03

* change needs in the last step

* add generate csv in harness/make_table_results.py

* modify needs in the last job

* add csv to html

* mfix path issue in llm-harness-summary-nightly

* modify output_path

* modify args in make_table_results.py

* modify make table command in summary

* change pr env label

* remove irrelevant code in summary; add set output path step; add limit in harness run

* re-organize code structure

* modify limit in run harness

* modify csv_to_html input path

* modify needs in summary-nightly
2024-02-08 19:01:05 +08:00

204 lines
9.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Python program to convert CSV to HTML Table
import os
import sys
import argparse
import pandas as pd
def highlight_vals(val, max=3.0, color1='red', color2='green'):
if isinstance(val, float):
if val > max:
return 'background-color: %s' % color2
elif val <= -max:
return 'background-color: %s' % color1
else:
return ''
def nonzero_min(lst):
non_zero_lst = [num for num in lst if num > 0.0]
return min(non_zero_lst) if non_zero_lst else None
def is_diffs_within_normal_range(diff1, diff2, diff3, threshold=5.0):
return not any(diff < (-threshold) for diff in diff1 + diff2 + diff3 if isinstance(diff, float))
def add_to_dict(dict, key, value):
if key not in dict:
dict[key] = []
dict[key].append(value)
def best_in_dict(dict, key, value):
if key in dict:
best_value = nonzero_min(dict[key])
if best_value < value or value <= 0.0:
return best_value
return value
return value
def main():
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
help="The directory which stores the .csv file", default="/home/arda/yibo/BigDL/python/llm/dev/benchmark/harness")
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
help="the threshold of highlight values", default=3.0)
parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
help="the baseline path which stores the baseline.csv file")
args = parser.parse_args()
csv_files = []
for file_name in os.listdir(args.folder_path):
file_path = os.path.join(args.folder_path, file_name)
if os.path.isfile(file_path) and file_name.endswith(".csv"):
csv_files.append(file_path)
csv_files.sort(reverse=True)
highlight_threshold=args.threshold
latest_csv = pd.read_csv(csv_files[0], index_col=0)
daily_html=csv_files[0].split(".")[0]+".html"
diffs_within_normal_range = True
if len(csv_files)>1:
if args.baseline_path:
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
else:
previous_csv = pd.read_csv(csv_files[1], index_col=0)
last1=['']*len(latest_csv.index)
diff1=['']*len(latest_csv.index)
last2=['']*len(latest_csv.index)
diff2=['']*len(latest_csv.index)
last3=['']*len(latest_csv.index)
diff3=['']*len(latest_csv.index)
best_last1=['']*len(latest_csv.index)
best_diff1=['']*len(latest_csv.index)
best_last2=['']*len(latest_csv.index)
best_diff2=['']*len(latest_csv.index)
best_last3=['']*len(latest_csv.index)
best_diff3=['']*len(latest_csv.index)
Arc='Arc'
TruthfulQA='TruthfulQA'
Winogrande='Winogrande'
csv_dict = {}
for csv_file in csv_files:
current_csv = pd.read_csv(csv_file, index_col=0)
for current_csv_ind,current_csv_row in current_csv.iterrows():
current_csv_model=current_csv_row['Model'].strip()
current_csv_precision=current_csv_row['Precision'].strip()
current_csv_model_arc=current_csv_model+'-'+current_csv_precision+'-'+'Arc'
current_csv_model_truthfulqa=current_csv_model+'-'+current_csv_precision+'-'+'TruthfulQA'
current_csv_model_winogrande=current_csv_model+'-'+current_csv_precision+'-'+'Winogrande'
add_to_dict(csv_dict, current_csv_model_arc, current_csv_row[Arc])
add_to_dict(csv_dict, current_csv_model_truthfulqa, current_csv_row[TruthfulQA])
add_to_dict(csv_dict, current_csv_model_winogrande, current_csv_row[Winogrande])
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
latest_csv_model=latest_csv_row['Model'].strip()
latest_csv_precision=latest_csv_row['Precision'].strip()
latest_arc=latest_csv_row[Arc]
latest_truthfulqa=latest_csv_row[TruthfulQA]
latest_winogrande=latest_csv_row[Winogrande]
key1=latest_csv_model+'-'+latest_csv_precision+'-'+'Arc'
key2=latest_csv_model+'-'+latest_csv_precision+'-'+'TruthfulQA'
key3=latest_csv_model+'-'+latest_csv_precision+'-'+'Winogrande'
best_last1_value=best_in_dict(csv_dict, key1, latest_arc)
best_last2_value=best_in_dict(csv_dict, key2, latest_truthfulqa)
best_last3_value=best_in_dict(csv_dict, key3, latest_winogrande)
best_last1[latest_csv_ind]=best_last1_value
best_diff1[latest_csv_ind]=round((best_last1_value-latest_arc)*100/best_last1_value,2)
best_last2[latest_csv_ind]=best_last2_value
best_diff2[latest_csv_ind]=round((best_last2_value-latest_truthfulqa)*100/best_last2_value,2)
best_last3[latest_csv_ind]=best_last3_value
best_diff3[latest_csv_ind]=round((best_last3_value-latest_winogrande)*100/best_last3_value,2)
in_previous_flag=False
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
previous_csv_model=previous_csv_row['Model'].strip()
previous_csv_precision=previous_csv_row['Precision'].strip()
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
previous_arc=previous_csv_row[Arc]
previous_truthfulqa=previous_csv_row[TruthfulQA]
previous_winogrande=previous_csv_row[Winogrande]
if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
last1[latest_csv_ind]=previous_arc
diff1[latest_csv_ind]=round((previous_arc-latest_arc)*100/previous_arc,2)
last2[latest_csv_ind]=previous_truthfulqa
diff2[latest_csv_ind]=round((previous_truthfulqa-latest_truthfulqa)*100/previous_truthfulqa,2)
last3[latest_csv_ind]=previous_winogrande
diff3[latest_csv_ind]=round((previous_winogrande-latest_winogrande)*100/previous_winogrande,2)
in_previous_flag=True
if not in_previous_flag:
last1[latest_csv_ind]=pd.NA
diff1[latest_csv_ind]=pd.NA
last2[latest_csv_ind]=pd.NA
diff2[latest_csv_ind]=pd.NA
last3[latest_csv_ind]=pd.NA
diff3[latest_csv_ind]=pd.NA
latest_csv.insert(loc=5,column='last1',value=last1)
latest_csv.insert(loc=6,column='diff1(%)',value=diff1)
latest_csv.insert(loc=7,column='last2',value=last2)
latest_csv.insert(loc=8,column='diff2(%)',value=diff2)
latest_csv.insert(loc=9,column='last3',value=last3)
latest_csv.insert(loc=10,column='diff3(%)',value=diff3)
latest_csv.insert(loc=11,column='best 1',value=best_last1)
latest_csv.insert(loc=12,column='best diff1(%)',value=best_diff1)
latest_csv.insert(loc=13,column='best 2',value=best_last2)
latest_csv.insert(loc=14,column='best diff2(%)',value=best_diff2)
latest_csv.insert(loc=15,column='best 3',value=best_last3)
latest_csv.insert(loc=16,column='best diff3(%)',value=best_diff3)
diffs_within_normal_range = is_diffs_within_normal_range(diff1, diff2, diff3, threshold=highlight_threshold)
subset1=['diff1(%)','diff2(%)','diff3(%)' ]
subset2=['best diff1(%)','best diff2(%)','best diff3(%)']
columns={'Arc': '{:.2f}', 'TruthfulQA': '{:.2f}', 'Winogrande': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'last3': '{:.2f}', 'diff3(%)': '{:.2f}',
'best 1': '{:.2f}', 'best diff1(%)': '{:.2f}', 'best 2': '{:.2f}', 'best diff2(%)': '{:.2f}', 'best 3': '{:.2f}', 'best diff3(%)': '{:.2f}'}
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, color1='red', color2='green'), subset=subset1)
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=3.0, color1='yellow'), subset=subset2)
html_output = styled_df.set_table_attributes("border=1").render()
with open(daily_html, 'w') as f:
f.write(html_output)
else:
latest_csv.to_html(daily_html)
if args.baseline_path and not diffs_within_normal_range:
print("The diffs are outside the normal range: %" + str(highlight_threshold))
return 1
return 0
if __name__ == "__main__":
sys.exit(main())