* chnage storage * fix typo * change label * change label to arc03 * change needs in the last step * add generate csv in harness/make_table_results.py * modify needs in the last job * add csv to html * mfix path issue in llm-harness-summary-nightly * modify output_path * modify args in make_table_results.py * modify make table command in summary * change pr env label * remove irrelevant code in summary; add set output path step; add limit in harness run * re-organize code structure * modify limit in run harness * modify csv_to_html input path * modify needs in summary-nightly
204 lines
9.2 KiB
Python
204 lines
9.2 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
# Python program to convert CSV to HTML Table
|
|
|
|
import os
|
|
import sys
|
|
import argparse
|
|
import pandas as pd
|
|
|
|
def highlight_vals(val, max=3.0, color1='red', color2='green'):
|
|
if isinstance(val, float):
|
|
if val > max:
|
|
return 'background-color: %s' % color2
|
|
elif val <= -max:
|
|
return 'background-color: %s' % color1
|
|
else:
|
|
return ''
|
|
|
|
def nonzero_min(lst):
|
|
non_zero_lst = [num for num in lst if num > 0.0]
|
|
return min(non_zero_lst) if non_zero_lst else None
|
|
|
|
def is_diffs_within_normal_range(diff1, diff2, diff3, threshold=5.0):
|
|
return not any(diff < (-threshold) for diff in diff1 + diff2 + diff3 if isinstance(diff, float))
|
|
|
|
def add_to_dict(dict, key, value):
|
|
if key not in dict:
|
|
dict[key] = []
|
|
dict[key].append(value)
|
|
|
|
def best_in_dict(dict, key, value):
|
|
if key in dict:
|
|
best_value = nonzero_min(dict[key])
|
|
if best_value < value or value <= 0.0:
|
|
return best_value
|
|
return value
|
|
return value
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
|
|
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
|
|
help="The directory which stores the .csv file", default="/home/arda/yibo/BigDL/python/llm/dev/benchmark/harness")
|
|
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
|
|
help="the threshold of highlight values", default=3.0)
|
|
parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
|
|
help="the baseline path which stores the baseline.csv file")
|
|
args = parser.parse_args()
|
|
|
|
csv_files = []
|
|
for file_name in os.listdir(args.folder_path):
|
|
file_path = os.path.join(args.folder_path, file_name)
|
|
if os.path.isfile(file_path) and file_name.endswith(".csv"):
|
|
csv_files.append(file_path)
|
|
csv_files.sort(reverse=True)
|
|
|
|
highlight_threshold=args.threshold
|
|
|
|
latest_csv = pd.read_csv(csv_files[0], index_col=0)
|
|
daily_html=csv_files[0].split(".")[0]+".html"
|
|
|
|
diffs_within_normal_range = True
|
|
|
|
if len(csv_files)>1:
|
|
if args.baseline_path:
|
|
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
|
|
else:
|
|
previous_csv = pd.read_csv(csv_files[1], index_col=0)
|
|
|
|
last1=['']*len(latest_csv.index)
|
|
diff1=['']*len(latest_csv.index)
|
|
last2=['']*len(latest_csv.index)
|
|
diff2=['']*len(latest_csv.index)
|
|
last3=['']*len(latest_csv.index)
|
|
diff3=['']*len(latest_csv.index)
|
|
|
|
best_last1=['']*len(latest_csv.index)
|
|
best_diff1=['']*len(latest_csv.index)
|
|
best_last2=['']*len(latest_csv.index)
|
|
best_diff2=['']*len(latest_csv.index)
|
|
best_last3=['']*len(latest_csv.index)
|
|
best_diff3=['']*len(latest_csv.index)
|
|
|
|
Arc='Arc'
|
|
TruthfulQA='TruthfulQA'
|
|
Winogrande='Winogrande'
|
|
|
|
csv_dict = {}
|
|
for csv_file in csv_files:
|
|
current_csv = pd.read_csv(csv_file, index_col=0)
|
|
for current_csv_ind,current_csv_row in current_csv.iterrows():
|
|
current_csv_model=current_csv_row['Model'].strip()
|
|
current_csv_precision=current_csv_row['Precision'].strip()
|
|
current_csv_model_arc=current_csv_model+'-'+current_csv_precision+'-'+'Arc'
|
|
current_csv_model_truthfulqa=current_csv_model+'-'+current_csv_precision+'-'+'TruthfulQA'
|
|
current_csv_model_winogrande=current_csv_model+'-'+current_csv_precision+'-'+'Winogrande'
|
|
add_to_dict(csv_dict, current_csv_model_arc, current_csv_row[Arc])
|
|
add_to_dict(csv_dict, current_csv_model_truthfulqa, current_csv_row[TruthfulQA])
|
|
add_to_dict(csv_dict, current_csv_model_winogrande, current_csv_row[Winogrande])
|
|
|
|
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
|
|
|
|
latest_csv_model=latest_csv_row['Model'].strip()
|
|
latest_csv_precision=latest_csv_row['Precision'].strip()
|
|
latest_arc=latest_csv_row[Arc]
|
|
latest_truthfulqa=latest_csv_row[TruthfulQA]
|
|
latest_winogrande=latest_csv_row[Winogrande]
|
|
|
|
key1=latest_csv_model+'-'+latest_csv_precision+'-'+'Arc'
|
|
key2=latest_csv_model+'-'+latest_csv_precision+'-'+'TruthfulQA'
|
|
key3=latest_csv_model+'-'+latest_csv_precision+'-'+'Winogrande'
|
|
|
|
best_last1_value=best_in_dict(csv_dict, key1, latest_arc)
|
|
best_last2_value=best_in_dict(csv_dict, key2, latest_truthfulqa)
|
|
best_last3_value=best_in_dict(csv_dict, key3, latest_winogrande)
|
|
|
|
best_last1[latest_csv_ind]=best_last1_value
|
|
best_diff1[latest_csv_ind]=round((best_last1_value-latest_arc)*100/best_last1_value,2)
|
|
best_last2[latest_csv_ind]=best_last2_value
|
|
best_diff2[latest_csv_ind]=round((best_last2_value-latest_truthfulqa)*100/best_last2_value,2)
|
|
best_last3[latest_csv_ind]=best_last3_value
|
|
best_diff3[latest_csv_ind]=round((best_last3_value-latest_winogrande)*100/best_last3_value,2)
|
|
|
|
in_previous_flag=False
|
|
|
|
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
|
|
|
|
previous_csv_model=previous_csv_row['Model'].strip()
|
|
previous_csv_precision=previous_csv_row['Precision'].strip()
|
|
|
|
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
|
|
|
|
previous_arc=previous_csv_row[Arc]
|
|
previous_truthfulqa=previous_csv_row[TruthfulQA]
|
|
previous_winogrande=previous_csv_row[Winogrande]
|
|
if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
|
|
last1[latest_csv_ind]=previous_arc
|
|
diff1[latest_csv_ind]=round((previous_arc-latest_arc)*100/previous_arc,2)
|
|
last2[latest_csv_ind]=previous_truthfulqa
|
|
diff2[latest_csv_ind]=round((previous_truthfulqa-latest_truthfulqa)*100/previous_truthfulqa,2)
|
|
last3[latest_csv_ind]=previous_winogrande
|
|
diff3[latest_csv_ind]=round((previous_winogrande-latest_winogrande)*100/previous_winogrande,2)
|
|
in_previous_flag=True
|
|
|
|
if not in_previous_flag:
|
|
last1[latest_csv_ind]=pd.NA
|
|
diff1[latest_csv_ind]=pd.NA
|
|
last2[latest_csv_ind]=pd.NA
|
|
diff2[latest_csv_ind]=pd.NA
|
|
last3[latest_csv_ind]=pd.NA
|
|
diff3[latest_csv_ind]=pd.NA
|
|
|
|
latest_csv.insert(loc=5,column='last1',value=last1)
|
|
latest_csv.insert(loc=6,column='diff1(%)',value=diff1)
|
|
latest_csv.insert(loc=7,column='last2',value=last2)
|
|
latest_csv.insert(loc=8,column='diff2(%)',value=diff2)
|
|
latest_csv.insert(loc=9,column='last3',value=last3)
|
|
latest_csv.insert(loc=10,column='diff3(%)',value=diff3)
|
|
|
|
latest_csv.insert(loc=11,column='best 1',value=best_last1)
|
|
latest_csv.insert(loc=12,column='best diff1(%)',value=best_diff1)
|
|
latest_csv.insert(loc=13,column='best 2',value=best_last2)
|
|
latest_csv.insert(loc=14,column='best diff2(%)',value=best_diff2)
|
|
latest_csv.insert(loc=15,column='best 3',value=best_last3)
|
|
latest_csv.insert(loc=16,column='best diff3(%)',value=best_diff3)
|
|
|
|
diffs_within_normal_range = is_diffs_within_normal_range(diff1, diff2, diff3, threshold=highlight_threshold)
|
|
|
|
subset1=['diff1(%)','diff2(%)','diff3(%)' ]
|
|
subset2=['best diff1(%)','best diff2(%)','best diff3(%)']
|
|
|
|
columns={'Arc': '{:.2f}', 'TruthfulQA': '{:.2f}', 'Winogrande': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
|
|
'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'last3': '{:.2f}', 'diff3(%)': '{:.2f}',
|
|
'best 1': '{:.2f}', 'best diff1(%)': '{:.2f}', 'best 2': '{:.2f}', 'best diff2(%)': '{:.2f}', 'best 3': '{:.2f}', 'best diff3(%)': '{:.2f}'}
|
|
|
|
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, color1='red', color2='green'), subset=subset1)
|
|
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=3.0, color1='yellow'), subset=subset2)
|
|
html_output = styled_df.set_table_attributes("border=1").render()
|
|
|
|
with open(daily_html, 'w') as f:
|
|
f.write(html_output)
|
|
else:
|
|
latest_csv.to_html(daily_html)
|
|
|
|
if args.baseline_path and not diffs_within_normal_range:
|
|
print("The diffs are outside the normal range: %" + str(highlight_threshold))
|
|
return 1
|
|
return 0
|
|
|
|
if __name__ == "__main__":
|
|
sys.exit(main())
|