* Add C-Eval HTML report * Fix C-Eval workflow pr trigger path * Fix C-Eval workflow typos * Add permissions to C-Eval workflow * Fix C-Eval workflow typo * Add pandas dependency * Fix C-Eval workflow typo
94 lines
3.2 KiB
Python
94 lines
3.2 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import pdb
|
|
import sys
|
|
import csv
|
|
import json
|
|
import datetime
|
|
import pandas as pd
|
|
|
|
|
|
if __name__ == '__main__':
|
|
result_path = sys.argv[1]
|
|
output_path = sys.argv[2]
|
|
|
|
column_size = [25, 15, 10, 18, 15, 10, 10, 10]
|
|
pad_string = lambda x, l: [i.ljust(j) for i, j in zip(x, l)]
|
|
column_names = ["Model Name", "Precision", "STEM", "Social Science", "Humanities", "Other", "Hard", "Average"]
|
|
|
|
print(f'\nDumping results for C-Eval score:\n')
|
|
print(' '.join(pad_string(column_names, column_size)))
|
|
print()
|
|
|
|
file_lst = os.listdir(result_path)
|
|
file_lst = [f'{result_path}/{i}' for i in file_lst]
|
|
|
|
organized_dict = {} # {'Qwen-7B': {'sym_int4': [], 'mixed_fp4': }}
|
|
for file in file_lst:
|
|
# Read the JSON file
|
|
with open(file, 'r') as file:
|
|
data = json.load(file)
|
|
|
|
result_lst = [data['Model Name'], data['Precision']]
|
|
|
|
result_lst += data['Results']
|
|
|
|
# store in the organized dictionary
|
|
try:
|
|
organized_dict[data['Model Name']][data['Precision']] = result_lst
|
|
except:
|
|
organized_dict[data['Model Name']] = {}
|
|
organized_dict[data['Model Name']][data['Precision']] = result_lst
|
|
|
|
# define the print precision order
|
|
model_order = ['chatglm2-6b', 'chinese-llama2-7b', 'Qwen-7B-Chat']
|
|
precision_order = ['sym_int4', 'fp8_e5m2']
|
|
|
|
# print the results
|
|
for model_name in organized_dict.keys():
|
|
for precision in precision_order:
|
|
try:
|
|
# print the result
|
|
print(' '.join(pad_string(organized_dict[model_name][precision], column_size)))
|
|
except KeyError:
|
|
pass
|
|
# separate between models
|
|
print()
|
|
|
|
# initialize the csv file
|
|
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
|
file_name = f'results_{current_date}.csv'
|
|
file_name = os.path.join(output_path, file_name) if output_path else file_name
|
|
print('Writing to', file_name)
|
|
|
|
with open(file_name, mode='w', newline='') as csv_file:
|
|
writer = csv.writer(csv_file)
|
|
|
|
headers = ["Model Name", "Precision", 'STEM', 'Social Science', 'Humanities', 'Other', 'Hard', 'Average']
|
|
writer.writerow(headers)
|
|
|
|
# print the results
|
|
for model_name in model_order:
|
|
for precision in precision_order:
|
|
try:
|
|
# write the result to the csv row
|
|
writer.writerow(organized_dict[model_name][precision])
|
|
except KeyError:
|
|
writer.writerow([model_name, precision]+[pd.NA for i in range(len(headers[2:]))])
|
|
|
|
|