ipex-llm/python/llm/example/GPU/HuggingFace/LLM/glm-edge/generate.py
Chu,Youcheng a86487c539
Add GLM-Edge GPU example (#12483)
* feat: initial commit

* generate.py and README updates

* Update link for main readme

* Update based on comments

* Small fix

---------

Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
2024-12-16 14:39:19 +08:00

85 lines
3.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for GLM-Edge model')
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-edge-4b-chat",
help='The huggingface repo id for the GLM-Edge model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
model = model.half().to("xpu")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
# The following code for generation is adapted from https://huggingface.co/THUDM/glm-edge-1.5b-chat#inference
message = [{"role": "user", "content": args.prompt}]
inputs = tokenizer.apply_chat_template(
message,
return_tensors="pt",
add_generation_prompt=True,
return_dict=True,
).to("xpu")
generate_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": args.n_predict,
"do_sample": False,
}
# ipex_llm model needs a warmup, then inference time can be accurate
output = model.generate(**generate_kwargs)
st = time.time()
output = model.generate(**generate_kwargs)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)