* add codegemma example in GPU/HF-Transformers-AutoModels/ * add README of codegemma example in GPU/HF-Transformers-AutoModels/ * add codegemma example in GPU/PyTorch-Models/ * add readme of codegemma example in GPU/PyTorch-Models/ * add codegemma example in CPU/HF-Transformers-AutoModels/ * add readme of codegemma example in CPU/HF-Transformers-AutoModels/ * add codegemma example in CPU/PyTorch-Models/ * add readme of codegemma example in CPU/PyTorch-Models/ * fix typos * fix filename typo * add codegemma in tables * add comments of lm_head * remove comments of use_cache
		
			
				
	
	
		
			71 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			71 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from ipex_llm.transformers import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer
 | 
						|
 | 
						|
# The instruction-tuned models use a chat template that must be adhered to for conversational use.
 | 
						|
# see https://huggingface.co/google/codegemma-7b-it#chat-template.
 | 
						|
chat = [
 | 
						|
    { "role": "user", "content": "Write a hello world program" },
 | 
						|
]
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeGemma model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="google/codegemma-7b-it",
 | 
						|
                        help='The huggingface repo id for the CodeGemma to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="Write a hello world program",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    # To fix the issue that the output of codegemma-7b-it is abnormal, skip the 'lm_head' module during optimization
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                 load_in_4bit=True,
 | 
						|
                                                 trust_remote_code=True,
 | 
						|
                                                 use_cache=True,
 | 
						|
                                                 modules_to_not_convert=["lm_head"])
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
        chat[0]['content'] = args.prompt
 | 
						|
        prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
						|
 | 
						|
        # start inference
 | 
						|
        st = time.time()
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
        end = time.time()
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Prompt', '-'*20)
 | 
						|
        print(prompt)
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(output_str)
 |