ipex-llm/python/llm/dev/benchmark/harness/run_llb.py
Chen, Zhentao cb228c70ea Add harness nightly (#9552)
* modify output_path as a directory

* schedule nightly at 21 on Friday

* add tasks and models for nightly

* add accuracy regression

* comment out if to test

* mixed fp4

* for test

* add  missing delimiter

* remove comma

* fixed golden results

* add mixed 4 golden result

* add more options

* add mistral results

* get golden result of stable lm

* move nightly scripts and results to test folder

* add license

* add fp8 stable lm golden

* run on all available devices

* trigger only when ready for review

* fix new line

* update golden

* add mistral
2023-12-01 14:16:35 +08:00

150 lines
5.8 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import json
import logging
import os
from harness_to_leaderboard import *
from lm_eval import tasks, evaluator, utils, models
from bigdl_llm import BigDLLM
models.MODEL_REGISTRY['bigdl-llm'] = BigDLLM # patch bigdl-llm to harness
logging.getLogger("openai").setLevel(logging.WARNING)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="")
parser.add_argument("--pretrained", required=True, type=str)
parser.add_argument("--tasks", required=True, nargs='+', type=str)
parser.add_argument("--precision", required=True, nargs='+', type=str)
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--batch_size", type=str, default=None)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
help="Maximal batch size to try with --batch_size auto",
)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--output_path", default=None)
parser.add_argument(
"--limit",
type=float,
default=None,
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument("--data_sampling", type=float, default=None)
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--write_out", action="store_true", default=False)
parser.add_argument("--output_base_path", type=str, default=None)
return parser.parse_args()
def main():
args = parse_args()
assert not args.provide_description # not implemented
if args.limit:
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
# if args.tasks is None:
# task_names = tasks.ALL_TASKS
# else:
# task_names = utils.pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
print(f"Selected Tasks: {args.tasks}")
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)
success = []
fail = []
model_name = os.path.basename(os.path.realpath(args.pretrained))
output_path = args.output_path if args.output_path else "results"
for prec in args.precision:
prec_arg = parse_precision(prec, args.model)
model_args = f"pretrained={args.pretrained},{prec_arg}"
if len(args.model_args) > 0:
model_args = f"{model_args},{args.model_args}"
for task in args.tasks:
task_names=task_map.get(task, task).split(',')
num_fewshot = task_to_n_few_shots.get(task, args.num_fewshot)
log_dir = f"{output_path}/{model_name}/{args.device}/{prec}/{task}"
os.makedirs(log_dir, exist_ok=True)
try:
results = evaluator.simple_evaluate(
model=args.model,
model_args=model_args,
tasks=task_names,
num_fewshot=num_fewshot,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=args.device,
no_cache=args.no_cache,
limit=args.limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
write_out=args.write_out,
output_base_path=log_dir
)
if len(results['results']) > 1:
average = {}
for _, subtask in results['results'].items():
for metric, value in subtask.items():
average[metric] = average.get(metric, []) + [value]
for k, v in average.items():
average[k] = sum(v) / len(v) if not k.endswith("_stderr") else 0
results['results'][task] = average
results['versions'][task] = 1
dumped = json.dumps(results, indent=2)
print(dumped)
if args.output_path:
with open(f"{log_dir}/result.json", "w") as f:
f.write(dumped)
success.append(results)
except Exception as e:
fail.append(f"Job config of task={task}, precision={prec} failed. Error Message: {str(e)}")
print(f"Job config of task={task}, precision={prec} failed. Error Message: {str(e)}")
## print all task summary
print("Here are results of all successful tasks:")
for results in success:
print(results['config'])
print(evaluator.make_table(results))
if len(fail) > 0:
raise RuntimeError('\n'.join(fail))
if __name__ == "__main__":
main()