84 lines
3.4 KiB
Python
84 lines
3.4 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import time
|
|
import argparse
|
|
import requests
|
|
from PIL import Image
|
|
from ipex_llm.transformers import AutoModel
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-Llama3-V-2_5 model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-Llama3-V-2_5",
|
|
help='The huggingface repo id for the openbmb/MiniCPM-Llama3-V-2_5 model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--image-url-or-path', type=str,
|
|
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
|
|
help='The URL or path to the image to infer')
|
|
parser.add_argument('--prompt', type=str, default="What is in the image?",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
image_path = args.image_url_or_path
|
|
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
|
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
|
model = AutoModel.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
optimize_model=False,
|
|
trust_remote_code=True,
|
|
modules_to_not_convert=["vpm", "resampler"],
|
|
use_cache=True)
|
|
model = model.float().to(device='xpu')
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
|
trust_remote_code=True)
|
|
model.eval()
|
|
|
|
query = args.prompt
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path).convert('RGB')
|
|
else:
|
|
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
|
|
|
# Generate predicted tokens
|
|
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/blob/main/README.md
|
|
msgs = [{'role': 'user', 'content': args.prompt}]
|
|
st = time.time()
|
|
res = model.chat(
|
|
image=image,
|
|
msgs=msgs,
|
|
context=None,
|
|
tokenizer=tokenizer,
|
|
sampling=False,
|
|
temperature=0.7
|
|
)
|
|
end = time.time()
|
|
print(f'Inference time: {end-st} s')
|
|
print('-'*20, 'Input', '-'*20)
|
|
print(image_path)
|
|
print('-'*20, 'Prompt', '-'*20)
|
|
print(args.prompt)
|
|
output_str = res
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(output_str)
|