* Add c-eval workflow and modify running files * Modify the chatglm evaluator file * Modify the ceval workflow for triggering test * Modify the ceval workflow file * Modify the ceval workflow file * Modify ceval workflow * Adjust the ceval dataset download * Add ceval workflow dependencies * Modify ceval workflow dataset download * Add ceval test dependencies * Add ceval test dependencies * Correct the result print * Fix the nightly test trigger time * Fix ChatGLM loading issue
		
			
				
	
	
		
			251 lines
		
	
	
		
			No EOL
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			No EOL
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						||
# Copyright 2016 The BigDL Authors.
 | 
						||
#
 | 
						||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
# you may not use this file except in compliance with the License.
 | 
						||
# You may obtain a copy of the License at
 | 
						||
#
 | 
						||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						||
#
 | 
						||
# Unless required by applicable law or agreed to in writing, software
 | 
						||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
# See the License for the specific language governing permissions and
 | 
						||
# limitations under the License.
 | 
						||
#
 | 
						||
# refer to https://github.com/THUDM/ChatGLM2-6B/blob/main/evaluation/evaluate_ceval.py
 | 
						||
 | 
						||
import re
 | 
						||
import torch
 | 
						||
from tqdm import tqdm
 | 
						||
from thefuzz import process
 | 
						||
from transformers import AutoTokenizer
 | 
						||
 | 
						||
from evaluators.evaluator import Evaluator
 | 
						||
from bigdl.llm.transformers import AutoModel
 | 
						||
from transformers.generation.utils import LogitsProcessorList
 | 
						||
from transformers.generation.logits_process import LogitsProcessor
 | 
						||
 | 
						||
 | 
						||
class InvalidScoreLogitsProcessor(LogitsProcessor):
 | 
						||
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
 | 
						||
        if torch.isnan(scores).any() or torch.isinf(scores).any():
 | 
						||
            scores.zero_()
 | 
						||
            scores[..., 5] = 5e4
 | 
						||
        return scores
 | 
						||
 | 
						||
 | 
						||
class ChatGLMEvaluator(Evaluator):
 | 
						||
    def __init__(self, choices, model_path="THUDM/chatglm-6b", device="xpu", qtype="sym_int4"):
 | 
						||
        super(ChatGLMEvaluator, self).__init__(choices, model_path, device, qtype)
 | 
						||
        self.tokenizer = AutoTokenizer.from_pretrained(
 | 
						||
            self.model_path,
 | 
						||
            trust_remote_code=True
 | 
						||
        )
 | 
						||
        self.model = AutoModel.from_pretrained(
 | 
						||
            self.model_path,
 | 
						||
            load_in_low_bit=self.qtype,
 | 
						||
            optimize_model=True,
 | 
						||
            use_cache=True,
 | 
						||
            trust_remote_code=True
 | 
						||
        ).eval().to(self.device)
 | 
						||
  
 | 
						||
    def generate_few_shot_prompt(self, subject, dev_df, cot=False):
 | 
						||
        message = []
 | 
						||
        k = self.k
 | 
						||
        if self.k == -1:
 | 
						||
            k = dev_df.shape[0]
 | 
						||
        message.append(self.format_example(dev_df.iloc[0, :], cot=cot, add_prompt=f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n"))
 | 
						||
        for i in range(1, k):
 | 
						||
            message.append(self.format_example(dev_df.iloc[i, :], cot=cot))
 | 
						||
        return message
 | 
						||
        
 | 
						||
    def format_example(self, line, include_answer=False, cot=False, add_prompt=''):
 | 
						||
        example = add_prompt + line['question']
 | 
						||
        # print(example)
 | 
						||
        for choice in self.choices:
 | 
						||
            example += f'\n{choice}. {line[f"{choice}"]}'
 | 
						||
        example += '\n答案:'
 | 
						||
        if include_answer:
 | 
						||
            if cot:
 | 
						||
                ans = "让我们一步一步思考,\n" + line["explanation"] + f"\n所以答案是{line['answer']}。"
 | 
						||
            else:
 | 
						||
                ans = line["answer"]
 | 
						||
            m = (example, ans)
 | 
						||
            return m
 | 
						||
        return example
 | 
						||
    
 | 
						||
    def extract_cot_answer(self, line, gen_ans):
 | 
						||
        m = re.findall(r'所以答案是(.+?)。', gen_ans, re.M)
 | 
						||
        if len(m) > 0 and m[-1] in self.choices:
 | 
						||
            return m[-1], True
 | 
						||
        answer_patterns = [
 | 
						||
            r'([ABCD])是正确的',
 | 
						||
            r'选项([ABCD])正确',
 | 
						||
            r'答案为([ABCD])',
 | 
						||
            r'答案是([ABCD])',
 | 
						||
            r'答案([ABCD])',
 | 
						||
            r'选择([ABCD])',
 | 
						||
            r'答案:([ABCD])',
 | 
						||
            r'选择答案([ABCD])'
 | 
						||
        ]
 | 
						||
        # RE extraction
 | 
						||
        for answer_pattern in answer_patterns:
 | 
						||
            m = re.search(answer_pattern, gen_ans, re.M)
 | 
						||
            if m:
 | 
						||
                answer = m.group(1)
 | 
						||
                return answer, False
 | 
						||
        # only containing one choice-character
 | 
						||
        m = re.findall(r'[ABCD]', gen_ans, re.M)
 | 
						||
        if len(m) == 1:
 | 
						||
            answer = m[0]
 | 
						||
            return answer, False
 | 
						||
        answer_word_counter = 0
 | 
						||
        # only containing one choice-context
 | 
						||
        for c in self.choices:
 | 
						||
            if str(line[f'{c}']) in gen_ans:
 | 
						||
                answer = c
 | 
						||
                answer_word_counter += 1
 | 
						||
        if answer_word_counter == 1:
 | 
						||
            return answer, False
 | 
						||
        return '-', False
 | 
						||
    
 | 
						||
    def extract_choice(self, gen, prompt, choice_list):
 | 
						||
        res = re.search(
 | 
						||
            r"(?:(?:选|选择|选定)[::]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.|,|,|.|、|A|B|C|D|$|:|:|\)|))",
 | 
						||
            gen,
 | 
						||
        )
 | 
						||
 | 
						||
        if res is None:
 | 
						||
            res = re.search(
 | 
						||
                r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)",
 | 
						||
                gen,
 | 
						||
            )
 | 
						||
 | 
						||
        if res is None:
 | 
						||
            res = re.search(r"^[\((]?(A|B|C|D)(?:。|\)|)|\.|,|,|.|:|:|$)", gen)
 | 
						||
 | 
						||
        if res is None:
 | 
						||
            res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
 | 
						||
 | 
						||
        if res is None:
 | 
						||
            return self.choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
 | 
						||
        return res.group(1)
 | 
						||
 | 
						||
    def process_before_extraction(self, gen, question, choice_dict):
 | 
						||
 | 
						||
        question_split = question.rstrip("。").split("。")[-1].split("_")
 | 
						||
 | 
						||
        if len(question_split[0].strip()) > 4:
 | 
						||
            gen = gen.replace(question_split[0], "答案是")
 | 
						||
        if len(question_split[-1].strip()) > 4:
 | 
						||
            gen = gen.replace(question_split[-1], "")
 | 
						||
 | 
						||
        for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
 | 
						||
            gen = gen.replace(val.rstrip("。"), key)
 | 
						||
        return gen
 | 
						||
 | 
						||
    def extract_answer(self, response, row):
 | 
						||
        prompt = row["question"]
 | 
						||
        gen = self.process_before_extraction(
 | 
						||
            response, prompt, {choice: row[choice] for choice in self.choices}
 | 
						||
        )
 | 
						||
        if not isinstance(prompt, str):
 | 
						||
            prompt = prompt[0]
 | 
						||
        pred = self.extract_choice(gen, prompt, [row[choice] for choice in self.choices])
 | 
						||
        return pred
 | 
						||
 | 
						||
    def build_prompt(self, text):
 | 
						||
        return "[Round {}]\n\n问:{}\n\n答:".format(1, text)
 | 
						||
 | 
						||
    def generate_dist(self, model, tokenizer, query, history, max_length=2048,
 | 
						||
                      do_sample=False, logits_processor=None):
 | 
						||
        
 | 
						||
        if history is None:
 | 
						||
            history = []
 | 
						||
        if logits_processor is None:
 | 
						||
            logits_processor = LogitsProcessorList()
 | 
						||
        logits_processor.append(InvalidScoreLogitsProcessor())
 | 
						||
 | 
						||
        if not history:
 | 
						||
            prompt = query
 | 
						||
        else:
 | 
						||
            prompt = ""
 | 
						||
            for i, (old_query, response) in enumerate(history):
 | 
						||
                prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
 | 
						||
            prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
 | 
						||
 | 
						||
        # first round prompt
 | 
						||
        inputs = tokenizer([prompt], padding=True, return_tensors="pt",
 | 
						||
                           truncation=True, max_length=max_length).to(model.device)
 | 
						||
        
 | 
						||
        # first round generation
 | 
						||
        outputs = model.generate(**inputs, do_sample=do_sample, max_new_tokens=512)
 | 
						||
 | 
						||
        # organize intermediate_outputs
 | 
						||
        intermediate_outputs = []
 | 
						||
        for idx in range(len(outputs)):
 | 
						||
            output = outputs.tolist()[idx][len(inputs["input_ids"][idx]):]
 | 
						||
            response = tokenizer.decode(output)
 | 
						||
            intermediate_outputs.append(response)
 | 
						||
 | 
						||
        # prepare second round prompt
 | 
						||
        extraction_prompt = '综上所述,ABCD中正确的选项是:'
 | 
						||
        answer_texts = [query + intermediate + "\n" + extraction_prompt for intermediate in intermediate_outputs]
 | 
						||
        input_tokens = [self.build_prompt(answer_text) for answer_text in answer_texts]
 | 
						||
        inputs = tokenizer(input_tokens, padding=True, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
 | 
						||
 | 
						||
        # second round generation
 | 
						||
        outputs = model(**inputs, return_last_logit=True)
 | 
						||
 | 
						||
        logits = outputs.logits[:, -1]
 | 
						||
        choice_tokens = [tokenizer.encode(choice, add_special_tokens=False)[0] for choice in self.choices]
 | 
						||
        logits = logits[:, choice_tokens]
 | 
						||
        preds = logits.argmax(dim=-1)
 | 
						||
 | 
						||
        return self.choices[preds]
 | 
						||
 | 
						||
    @torch.no_grad()
 | 
						||
    def eval_subject(
 | 
						||
        self,
 | 
						||
        subject_name,
 | 
						||
        test_df,
 | 
						||
        eval_type="validation", # "test","validation",
 | 
						||
        dev_df=None,
 | 
						||
        few_shot=False,
 | 
						||
        cot=True,
 | 
						||
    ):
 | 
						||
        if eval_type == "validation":
 | 
						||
            correct_num = 0
 | 
						||
 | 
						||
            if few_shot:
 | 
						||
                history = self.generate_few_shot_prompt(subject_name, dev_df, cot=cot)
 | 
						||
            else:
 | 
						||
                history = []
 | 
						||
 | 
						||
            answers = list(test_df['answer'])
 | 
						||
 | 
						||
            for row_index, row in tqdm(test_df.iterrows(), total=len(test_df)):
 | 
						||
                question = self.format_example(row, include_answer=False, cot=cot)
 | 
						||
 | 
						||
                if few_shot:
 | 
						||
                    response, _ = self.model.chat(self.tokenizer, question, do_sample=False, history=history)
 | 
						||
                    response = response.strip()
 | 
						||
                    # For ChatGLM, we use answer extraction in answer-only mode too.
 | 
						||
                    ans, direct_extract = self.extract_cot_answer(row, response)
 | 
						||
                else:   # zero-shot by extracting answer from distribution
 | 
						||
                    ans = self.generate_dist(self.model, self.tokenizer, question, do_sample=False, max_length=2048, history=history)
 | 
						||
 | 
						||
                if ans == answers[row_index]:
 | 
						||
                    correct_num += 1
 | 
						||
 | 
						||
            correct_ratio = 100*correct_num/len(answers)
 | 
						||
 | 
						||
            return correct_ratio, None
 | 
						||
        elif eval_type == "test":
 | 
						||
            answers = {}
 | 
						||
            for i, row in tqdm(test_df.iterrows(), total=len(test_df)):
 | 
						||
                question = self.format_example(row, include_answer=False, cot=cot)
 | 
						||
                answers[str(i)] = self.generate_dist(self.model, self.tokenizer, question, do_sample=False, max_length=2048, history=[])
 | 
						||
 | 
						||
            return None, answers |