ipex-llm/python/llm/example/transformers/native_int4_pipeline.py
2023-07-03 14:13:33 +08:00

129 lines
5 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import argparse
def convert(repo_id_or_model_path, model_family, tmp_path):
from bigdl.llm import llm_convert
original_llm_path = repo_id_or_model_path
bigdl_llm_path = llm_convert(
model=original_llm_path,
outfile='./',
outtype='int4',
tmp_path=tmp_path,
model_family=model_family)
return bigdl_llm_path
def load(model_path, model_family, n_threads):
from bigdl.llm.transformers import BigdlForCausalLM
llm = BigdlForCausalLM.from_pretrained(
pretrained_model_name_or_path=model_path,
model_family=model_family,
n_threads=n_threads)
return llm
def inference(llm, repo_id_or_model_path, model_family, prompt):
if model_family in ['llama', 'gptneox', 'bloom', 'starcoder']:
# ------ Option 1: Use bigdl-llm based tokenizer
print('-'*20, ' bigdl-llm based tokenizer ', '-'*20)
st = time.time()
# please note that the prompt here can either be a string or a list of string
tokens_id = llm.tokenize(prompt)
output_tokens_id = llm.generate(tokens_id, max_new_tokens=32)
output = llm.batch_decode(output_tokens_id)
print(f'Inference time: {time.time()-st} s')
print(f'Output:\n{output}')
# ------- Option 2: Use HuggingFace transformers tokenizer
print('-'*20, ' HuggingFace transformers tokenizer ', '-'*20)
print('Please note that the loading of HuggingFace transformers tokenizer may take some time.\n')
# here is only a workaround for default example model 'decapoda-research/llama-7b-hf' in LLaMA family,
# due to its out-of-date 'tokenizer_class' defined in its tokenizer_config.json.
# for most cases, you could use `AutoTokenizer`.
if model_family == 'llama':
from transformers import LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained(repo_id_or_model_path)
else:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(repo_id_or_model_path)
st = time.time()
# please note that the prompt here can either be a string or a list of string
tokens_id = tokenizer(prompt).input_ids
output_tokens_id = llm.generate(tokens_id, max_new_tokens=32)
output = tokenizer.batch_decode(output_tokens_id)
print(f'Inference time: {time.time()-st} s')
print(f'Output:\n{output}')
# Option 3: fast forward
print('-'*20, ' fast forward ', '-'*20)
st = time.time()
output = llm(prompt, # please note that the prompt here can ONLY be a string
max_tokens=32)
print(f'Inference time (fast forward): {time.time()-st} s')
print(f'Output:\n{output}')
def main():
parser = argparse.ArgumentParser(description='INT4 pipeline example')
parser.add_argument('--thread-num', type=int, default=2, required=True,
help='Number of threads to use for inference')
parser.add_argument('--model-family', type=str, default='llama', required=True,
help="The model family of the large language model (supported option: 'llama', "
"'gptneox', 'bloom', 'starcoder')")
parser.add_argument('--repo-id-or-model-path', type=str, required=True,
help='The path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default='Q: What is CPU? A:',
help='Prompt to infer')
parser.add_argument('--tmp-path', type=str, default='/tmp',
help='path to store intermediate model during the conversion process')
args = parser.parse_args()
repo_id_or_model_path = args.repo_id_or_model_path
# Step 1: convert original model to BigDL llm model
bigdl_llm_path = convert(repo_id_or_model_path=repo_id_or_model_path,
model_family=args.model_family,
tmp_path=args.tmp_path)
# Step 2: load int4 model
llm = load(model_path=bigdl_llm_path,
model_family=args.model_family,
n_threads=args.thread_num)
# Step 3: inference
inference(llm=llm,
repo_id_or_model_path=repo_id_or_model_path,
model_family=args.model_family,
prompt=args.prompt)
if __name__ == '__main__':
main()