* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			77 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from ipex_llm.transformers import AutoModelForSpeechSeq2Seq
 | 
						|
from transformers import WhisperProcessor
 | 
						|
from datasets import load_dataset
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-tiny",
 | 
						|
                        help='The huggingface repo id for the Whisper model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--repo-id-or-data-path', type=str,
 | 
						|
                        default="hf-internal-testing/librispeech_asr_dummy",
 | 
						|
                        help='The huggingface repo id for the audio dataset to be downloaded'
 | 
						|
                             ', or the path to the huggingface dataset folder')
 | 
						|
    parser.add_argument('--language', type=str, default="english",
 | 
						|
                        help='language to be transcribed')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    dataset_path = args.repo_id_or_data_path
 | 
						|
    language = args.language
 | 
						|
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
 | 
						|
                                                      load_in_4bit=True,
 | 
						|
                                                      optimize_model=False,
 | 
						|
                                                      use_cache=True)
 | 
						|
    model.to('xpu')
 | 
						|
    model.config.forced_decoder_ids = None
 | 
						|
 | 
						|
    # Load processor
 | 
						|
    processor = WhisperProcessor.from_pretrained(model_path)
 | 
						|
    forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe")
 | 
						|
 | 
						|
    # Load dummy dataset and read audio files
 | 
						|
    ds = load_dataset(dataset_path, "clean", split="validation")
 | 
						|
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
        sample = ds[0]["audio"]
 | 
						|
 | 
						|
        input_features = processor(sample["array"],
 | 
						|
                                   sampling_rate=sample["sampling_rate"],
 | 
						|
                                   return_tensors="pt").input_features.to('xpu')
 | 
						|
        st = time.time()
 | 
						|
        # if your selected model is capable of utilizing previous key/value attentions
 | 
						|
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
						|
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
						|
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
						|
        predicted_ids = model.generate(input_features,
 | 
						|
                                       forced_decoder_ids=forced_decoder_ids)
 | 
						|
        end = time.time()
 | 
						|
        output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(output_str)
 |