* first commit of transformer int4 and pipeline * basic examples temp save for embeddings support embeddings and docqa exaple * fix based on comment * small fix
78 lines
2.9 KiB
Python
78 lines
2.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
|
# physically located elsewhere.
|
|
# Otherwise there would be module not found error in non-pip's setting as Python would
|
|
# only search the first bigdl package and end up finding only one sub-package.
|
|
|
|
import argparse
|
|
|
|
from langchain.vectorstores import Chroma
|
|
from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT,
|
|
QA_PROMPT)
|
|
from langchain.text_splitter import CharacterTextSplitter
|
|
from langchain.chains.question_answering import load_qa_chain
|
|
from langchain.callbacks.manager import CallbackManager
|
|
|
|
from bigdl.llm.langchain.llms import TransformersLLM
|
|
from bigdl.llm.langchain.embeddings import TransformersEmbeddings
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
input_path = args.input_path
|
|
model_path = args.model_path
|
|
query = args.question
|
|
|
|
# split texts of input doc
|
|
with open(input_path) as f:
|
|
input_doc = f.read()
|
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
|
texts = text_splitter.split_text(input_doc)
|
|
|
|
# create embeddings and store into vectordb
|
|
embeddings = TransformersEmbeddings.from_model_id(model_id=model_path)
|
|
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
|
|
|
|
#get relavant texts
|
|
docs = docsearch.get_relevant_documents(query)
|
|
|
|
bigdl_llm = TransformersLLM.from_model_id(
|
|
model_id=model_path,
|
|
model_kwargs={"temperature": 0, "max_length": 1024, "trust_remote_code": True},
|
|
)
|
|
|
|
doc_chain = load_qa_chain(
|
|
bigdl_llm, chain_type="stuff", prompt=QA_PROMPT
|
|
)
|
|
|
|
output = doc_chain.run(input_documents=docs, question=query)
|
|
print(output)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Transformer-int4 style API Simple Example')
|
|
parser.add_argument('-m','--model-path', type=str, required=True,
|
|
help='the path to transformers model')
|
|
parser.add_argument('-i', '--input-path', type=str,
|
|
help='the path to the input doc.')
|
|
parser.add_argument('-q', '--question', type=str, default='What is AI?',
|
|
help='qustion you want to ask.')
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|