83 lines
3.4 KiB
Python
83 lines
3.4 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import time
|
|
import argparse
|
|
import os
|
|
|
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
|
help='The huggingface repo id for the Llama2 model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument("--lowbit-path", type=str,
|
|
default="",
|
|
help='The path to the lowbit model folder, leave blank if you do not want to save. \
|
|
If path not exists, lowbit model will be saved there. \
|
|
Else, lowbit model will be loaded.')
|
|
parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
parser.add_argument('--load_in_low_bit', type=str, default="sym_int8",
|
|
help='Load in low bit to use')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
|
|
|
|
if not args.lowbit_path or not os.path.exists(args.lowbit_path):
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_path,
|
|
trust_remote_code=True,
|
|
load_in_low_bit=args.load_in_low_bit,
|
|
attn_implementation="eager"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.load_low_bit(
|
|
args.lowbit_path,
|
|
trust_remote_code=True,
|
|
bigdl_transformers_low_bit=args.load_in_low_bit,
|
|
attn_implementation="eager"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(args.lowbit_path, trust_remote_code=True)
|
|
|
|
print(model)
|
|
|
|
if args.lowbit_path and not os.path.exists(args.lowbit_path):
|
|
model.save_low_bit(args.lowbit_path)
|
|
tokenizer.save_pretrained(args.lowbit_path)
|
|
|
|
with torch.inference_mode():
|
|
input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
|
|
print("finish to load")
|
|
print('input length:', len(input_ids[0]))
|
|
st = time.time()
|
|
output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict)
|
|
end = time.time()
|
|
print(f'Inference time: {end-st} s')
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(output_str)
|
|
|
|
print('-'*80)
|
|
print('done')
|