ipex-llm/python/llm/dev/benchmark/ceval/organize_results.py
Yuxuan Xia 0c8d3c9830 Add C-Eval HTML report (#10294)
* Add C-Eval HTML report

* Fix C-Eval workflow pr trigger path

* Fix C-Eval workflow typos

* Add permissions to C-Eval workflow

* Fix C-Eval workflow typo

* Add pandas dependency

* Fix C-Eval workflow typo
2024-03-07 16:44:49 +08:00

94 lines
3.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import pdb
import sys
import csv
import json
import datetime
import pandas as pd
if __name__ == '__main__':
result_path = sys.argv[1]
output_path = sys.argv[2]
column_size = [25, 15, 10, 18, 15, 10, 10, 10]
pad_string = lambda x, l: [i.ljust(j) for i, j in zip(x, l)]
column_names = ["Model Name", "Precision", "STEM", "Social Science", "Humanities", "Other", "Hard", "Average"]
print(f'\nDumping results for C-Eval score:\n')
print(' '.join(pad_string(column_names, column_size)))
print()
file_lst = os.listdir(result_path)
file_lst = [f'{result_path}/{i}' for i in file_lst]
organized_dict = {} # {'Qwen-7B': {'sym_int4': [], 'mixed_fp4': }}
for file in file_lst:
# Read the JSON file
with open(file, 'r') as file:
data = json.load(file)
result_lst = [data['Model Name'], data['Precision']]
result_lst += data['Results']
# store in the organized dictionary
try:
organized_dict[data['Model Name']][data['Precision']] = result_lst
except:
organized_dict[data['Model Name']] = {}
organized_dict[data['Model Name']][data['Precision']] = result_lst
# define the print precision order
model_order = ['chatglm2-6b', 'chinese-llama2-7b', 'Qwen-7B-Chat']
precision_order = ['sym_int4', 'fp8_e5m2']
# print the results
for model_name in organized_dict.keys():
for precision in precision_order:
try:
# print the result
print(' '.join(pad_string(organized_dict[model_name][precision], column_size)))
except KeyError:
pass
# separate between models
print()
# initialize the csv file
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
file_name = f'results_{current_date}.csv'
file_name = os.path.join(output_path, file_name) if output_path else file_name
print('Writing to', file_name)
with open(file_name, mode='w', newline='') as csv_file:
writer = csv.writer(csv_file)
headers = ["Model Name", "Precision", 'STEM', 'Social Science', 'Humanities', 'Other', 'Hard', 'Average']
writer.writerow(headers)
# print the results
for model_name in model_order:
for precision in precision_order:
try:
# write the result to the csv row
writer.writerow(organized_dict[model_name][precision])
except KeyError:
writer.writerow([model_name, precision]+[pd.NA for i in range(len(headers[2:]))])