195 lines
7.1 KiB
Python
195 lines
7.1 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
|
|
#
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.distributed as dist
|
|
import os
|
|
import time
|
|
import numpy as np
|
|
from typing import Callable, List, Optional
|
|
from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
|
|
|
|
# patch GenerationMixin.generate
|
|
from transformers import GenerationMixin
|
|
original_generate = GenerationMixin.generate
|
|
|
|
|
|
class DummyLayer(nn.Module):
|
|
def __init__(self, *args):
|
|
super().__init__()
|
|
# to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
|
|
# python/llm/src/ipex_llm/transformers/models/llama.py#L2076
|
|
self.weight = torch.randn(1,)
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
|
|
class Dummy_MLPLayer(nn.Module):
|
|
def __init__(self, *args):
|
|
super().__init__()
|
|
# to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
|
|
# python/llm/src/ipex_llm/transformers/models/llama.py#L119
|
|
self.up_proj = DummyLayer()
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
|
|
class Dummy_DecoderLayer(nn.Module):
|
|
def __init__(self, *args):
|
|
super().__init__()
|
|
# to avoid AttributeError
|
|
self.input_layernorm = DummyLayer()
|
|
self.mlp = Dummy_MLPLayer()
|
|
|
|
def forward(self, hidden_states, past_key_value=None, use_cache=False, **kwargs):
|
|
outputs = (hidden_states,)
|
|
if use_cache:
|
|
outputs += (past_key_value,)
|
|
return outputs
|
|
|
|
|
|
def init_pipeline_parallel():
|
|
import oneccl_bindings_for_pytorch
|
|
os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1")
|
|
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
|
|
dist.init_process_group('ccl')
|
|
|
|
|
|
def pipeline_parallel(model, pipeline_parallel_stages):
|
|
slice_size = (model.config.num_hidden_layers + pipeline_parallel_stages - 1) // \
|
|
pipeline_parallel_stages
|
|
|
|
local_rank = dist.get_rank()
|
|
layer_start = slice_size * local_rank
|
|
layer_end = layer_start + min(slice_size, model.config.num_hidden_layers - layer_start)
|
|
|
|
for i in range(model.config.num_hidden_layers):
|
|
if i < layer_start or i >= layer_end:
|
|
model._modules['model'].layers[i] = Dummy_DecoderLayer()
|
|
else:
|
|
# align layer_idx and len(past_key_values), otherwise abnormal output
|
|
model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
|
|
|
|
if local_rank != 0:
|
|
model._modules['model'].embed_tokens = DummyLayer()
|
|
if local_rank != pipeline_parallel_stages - 1:
|
|
model._modules['model'].norm = DummyLayer()
|
|
model._modules['lm_head'] = DummyLayer()
|
|
|
|
model.pipeline_parallel_stages = pipeline_parallel_stages
|
|
model = model.to(f'xpu:{local_rank}')
|
|
return model
|
|
|
|
|
|
@torch.no_grad()
|
|
def generate(
|
|
self,
|
|
inputs: Optional[torch.Tensor] = None,
|
|
generation_config: Optional[GenerationConfig] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None,
|
|
synced_gpus: Optional[bool] = None,
|
|
assistant_model: Optional["PreTrainedModel"] = None,
|
|
streamer: Optional["BaseStreamer"] = None,
|
|
**kwargs,
|
|
):
|
|
if hasattr(self, 'pipeline_parallel_stages') and self.pipeline_parallel_stages > 1:
|
|
if generation_config is not None and generation_config.max_new_tokens is not None:
|
|
max_new_tokens = generation_config.max_new_tokens
|
|
else:
|
|
max_new_tokens = kwargs.get("max_new_tokens", None)
|
|
return self.pipeline_parallel_generate(inputs=inputs,
|
|
max_new_tokens=max_new_tokens,)
|
|
|
|
return original_generate(self,
|
|
inputs=inputs,
|
|
generation_config=generation_config,
|
|
logits_processor=logits_processor,
|
|
stopping_criteria=stopping_criteria,
|
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
|
synced_gpus=synced_gpus,
|
|
assistant_model=assistant_model,
|
|
streamer=streamer,
|
|
**kwargs)
|
|
|
|
GenerationMixin.generate = generate
|
|
|
|
|
|
@torch.no_grad()
|
|
def pipeline_parallel_generate(self,
|
|
inputs: Optional[torch.Tensor] = None,
|
|
max_new_tokens: int = 32,
|
|
**kwargs):
|
|
local_rank = dist.get_rank()
|
|
pre_rank = (local_rank - 1) % self.pipeline_parallel_stages
|
|
next_rank = (local_rank + 1) % self.pipeline_parallel_stages
|
|
|
|
self.first_token_time = 0
|
|
self.next_token_time = []
|
|
|
|
_input_ids = None
|
|
_past_key_values = None
|
|
bs = inputs.shape[0]
|
|
output_ids = inputs.clone()
|
|
|
|
step = 0
|
|
while True:
|
|
if step >= max_new_tokens:
|
|
break
|
|
|
|
if _input_ids is None:
|
|
_input_ids = inputs
|
|
|
|
tic = time.time()
|
|
if local_rank == 0:
|
|
outputs = self(input_ids=_input_ids, inputs_embeds=None,
|
|
past_key_values=_past_key_values, use_cache=True)
|
|
else:
|
|
inputs_embeds = torch.empty(_input_ids.shape + (self.config.hidden_size,),
|
|
device=f'xpu:{local_rank}', dtype=torch.float32)
|
|
dist.recv(inputs_embeds, src=pre_rank)
|
|
outputs = self(input_ids=None, inputs_embeds=inputs_embeds,
|
|
past_key_values=_past_key_values, use_cache=True)
|
|
|
|
if local_rank == self.pipeline_parallel_stages - 1:
|
|
logits = outputs.logits
|
|
next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
|
|
dist.broadcast(next_ids, src=local_rank)
|
|
else:
|
|
dist.send(outputs[0], dst=next_rank)
|
|
next_ids = torch.empty((bs, 1), device=f'xpu:{local_rank}', dtype=torch.int64)
|
|
dist.broadcast(next_ids, src=self.pipeline_parallel_stages - 1)
|
|
|
|
_input_ids = next_ids
|
|
output_ids = torch.cat([output_ids, next_ids], dim=-1)
|
|
_past_key_values = outputs.past_key_values
|
|
toc = time.time()
|
|
if step == 0:
|
|
self.first_token_time = toc - tic
|
|
else:
|
|
self.next_token_time.append(toc - tic)
|
|
step += 1
|
|
if self.device.type == 'xpu':
|
|
torch.xpu.synchronize()
|
|
self.rest_cost_mean = np.mean(self.next_token_time)
|
|
return output_ids
|