ipex-llm/python/llm/example/langchain/native_int4/voiceassistant.py

121 lines
4.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
# Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant
from langchain import LLMChain, PromptTemplate
from bigdl.llm.langchain.llms import BigdlNativeLLM
from langchain.memory import ConversationBufferWindowMemory
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
import speech_recognition as sr
import pyttsx3
import argparse
def prepare_chain(args):
model_path = args.model_path
model_family = args.model_family
n_threads = args.thread_num
# Use a easy prompt could bring good-enough result
template = """
{history}
Q: {human_input}
A:"""
prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
# We use our BigdlNativeLLM to subsititute OpenAI web-required API
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = BigdlNativeLLM(
model_path=model_path,
model_family=model_family,
n_threads=n_threads,
callback_manager=callback_manager,
verbose=True
)
# Following code are complete the same as the use-case
voiceassitant_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=2),
)
return voiceassitant_chain
def listen(voiceassitant_chain):
engine = pyttsx3.init()
r = sr.Recognizer()
with sr.Microphone() as source:
print("Calibrating...")
r.adjust_for_ambient_noise(source, duration=5)
# optional parameters to adjust microphone sensitivity
# r.energy_threshold = 200
# r.pause_threshold=0.5
print("Okay, go!")
while 1:
text = ""
print("listening now...")
try:
audio = r.listen(source, timeout=5, phrase_time_limit=30)
print("Recognizing...")
# whisper model options are found here: https://github.com/openai/whisper#available-models-and-languages
# other speech recognition models are also available.
text = r.recognize_whisper(
audio,
model="medium.en",
show_dict=True,
)["text"]
except Exception as e:
unrecognized_speech_text = (
f"Sorry, I didn't catch that. Exception was: {e}s"
)
text = unrecognized_speech_text
print(text)
response_text = voiceassitant_chain.predict(human_input=text)
print(response_text)
engine.say(response_text)
engine.runAndWait()
def main(args):
chain = prepare_chain(args)
listen(chain)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='BigDL-LLM Langchain Voice Assistant Example')
parser.add_argument('-x','--model-family', type=str, required=True,
help='the model family')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to the converted llm model')
parser.add_argument('-t','--thread-num', type=int, default=2,
help='Number of threads to use for inference')
args = parser.parse_args()
main(args)