61 lines
		
	
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			61 lines
		
	
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import os
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
 | 
						|
from transformers import LlamaTokenizer, AutoTokenizer
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Transformer INT4 example')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="decapoda-research/llama-7b-hf",
 | 
						|
                        choices=['decapoda-research/llama-7b-hf', 'THUDM/chatglm-6b'],
 | 
						|
                        help='The huggingface repo id for the larga language model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    if model_path == 'decapoda-research/llama-7b-hf':
 | 
						|
        # load_in_4bit=True in bigdl.llm.transformers will convert
 | 
						|
        # the relevant layers in the model into int4 format
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path)
 | 
						|
 | 
						|
        input_str = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
						|
 | 
						|
        with torch.inference_mode():
 | 
						|
            st = time.time()
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
 | 
						|
            output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
            end = time.time()
 | 
						|
        print(output_str)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
    elif model_path == 'THUDM/chatglm-6b':
 | 
						|
        model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
        input_str = "晚上睡不着应该怎么办"
 | 
						|
 | 
						|
        with torch.inference_mode():
 | 
						|
            st = time.time()
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
 | 
						|
            output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
            end = time.time()
 | 
						|
        print(output_str)
 | 
						|
        print(f'Inference time: {end-st} s')
 |