* model to fp16 & 2_6 reorganize * revisions * revisions * half * deleted transformer version requirements * deleted transformer version requirements --------- Co-authored-by: ivy-lv11 <zhicunlv@gmail.com>
175 lines
6.4 KiB
Python
175 lines
6.4 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
from typing import List, Tuple, Optional, Union
|
|
import math
|
|
import timm
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
# patched: `timm` has limited support for XPU backend, so we need to use CPU as a workaround
|
|
def resample_abs_pos_embed(
|
|
posemb: torch.Tensor,
|
|
new_size: List[int],
|
|
old_size: Optional[List[int]] = None,
|
|
num_prefix_tokens: int = 1,
|
|
interpolation: str = 'bicubic',
|
|
antialias: bool = True,
|
|
verbose: bool = False,
|
|
):
|
|
# sort out sizes, assume square if old size not provided
|
|
num_pos_tokens = posemb.shape[1]
|
|
num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens
|
|
if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]:
|
|
return posemb
|
|
|
|
if old_size is None:
|
|
hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens))
|
|
old_size = hw, hw
|
|
|
|
if num_prefix_tokens:
|
|
posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:]
|
|
else:
|
|
posemb_prefix, posemb = None, posemb
|
|
|
|
# do the interpolation
|
|
embed_dim = posemb.shape[-1]
|
|
orig_dtype = posemb.dtype
|
|
posemb = posemb.float() # interpolate needs float32
|
|
posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2)
|
|
#posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias)
|
|
posemb = F.interpolate(posemb.to("cpu"), size=new_size, mode=interpolation, antialias=antialias).to(posemb.device)
|
|
posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim)
|
|
posemb = posemb.to(orig_dtype)
|
|
|
|
# add back extra (class, etc) prefix tokens
|
|
if posemb_prefix is not None:
|
|
posemb = torch.cat([posemb_prefix, posemb], dim=1)
|
|
|
|
if not torch.jit.is_scripting() and verbose:
|
|
_logger.info(f'Resized position embedding: {old_size} to {new_size}.')
|
|
|
|
return posemb
|
|
|
|
|
|
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
|
|
if self.pos_embed is None:
|
|
return x.view(x.shape[0], -1, x.shape[-1])
|
|
|
|
if self.dynamic_img_size:
|
|
B, H, W, C = x.shape
|
|
pos_embed = resample_abs_pos_embed(
|
|
self.pos_embed,
|
|
(H, W),
|
|
num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
|
|
)
|
|
x = x.view(B, -1, C)
|
|
else:
|
|
pos_embed = self.pos_embed
|
|
|
|
to_cat = []
|
|
if self.cls_token is not None:
|
|
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
|
|
if self.reg_token is not None:
|
|
to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
|
|
|
|
if self.no_embed_class:
|
|
# deit-3, updated JAX (big vision)
|
|
# position embedding does not overlap with class token, add then concat
|
|
x = x + pos_embed
|
|
if to_cat:
|
|
x = torch.cat(to_cat + [x], dim=1)
|
|
else:
|
|
# original timm, JAX, and deit vit impl
|
|
# pos_embed has entry for class token, concat then add
|
|
if to_cat:
|
|
x = torch.cat(to_cat + [x], dim=1)
|
|
x = x + pos_embed
|
|
|
|
return self.pos_drop(x)
|
|
|
|
|
|
setattr(timm.models.VisionTransformer, "_pos_embed", _pos_embed)
|
|
|
|
|
|
import os
|
|
import time
|
|
import argparse
|
|
import requests
|
|
from PIL import Image
|
|
from ipex_llm.transformers import AutoModel
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-V-2_6 model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
|
|
help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--image-url-or-path', type=str,
|
|
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
|
|
help='The URL or path to the image to infer')
|
|
parser.add_argument('--prompt', type=str, default="What is in the image?",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
image_path = args.image_url_or_path
|
|
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
|
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
|
model = AutoModel.from_pretrained(model_path,
|
|
load_in_low_bit="sym_int4",
|
|
optimize_model=True,
|
|
trust_remote_code=True,
|
|
use_cache=True)
|
|
model = model.half().to(device='xpu')
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
|
trust_remote_code=True)
|
|
model.eval()
|
|
|
|
query = args.prompt
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path).convert('RGB')
|
|
else:
|
|
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
|
|
|
# Generate predicted tokens
|
|
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
|
|
msgs = [{'role': 'user', 'content': [image, args.prompt]}]
|
|
st = time.time()
|
|
res = model.chat(
|
|
image=None,
|
|
msgs=msgs,
|
|
context=None,
|
|
tokenizer=tokenizer,
|
|
sampling=False,
|
|
temperature=0.7
|
|
)
|
|
end = time.time()
|
|
print(f'Inference time: {end-st} s')
|
|
print('-'*20, 'Input', '-'*20)
|
|
print(image_path)
|
|
print('-'*20, 'Prompt', '-'*20)
|
|
print(args.prompt)
|
|
output_str = res
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(output_str)
|