ipex-llm/docs/readthedocs/source/index.rst
Yuwen Hu cf6a620bae [LLM] BigDL-LLM Documentation Initial Version (#8833)
* Change order of LLM in header

* Some updates to footer

* Add BigDL-LLM index page and basic file structure

* Update index page for key features

* Add initial content for BigDL-LLM in 5 mins

* Improvement to footnote

* Add initial contents based on current contents we have

* Add initial quick links

* Small fix

* Rename file

* Hide cli section for now and change model supports to examples

* Hugging Face format -> Hugging Face transformers format

* Add placeholder for GPU supports

* Add GPU related content structure

* Add cpu/gpu installation initial contents

* Add initial contents for GPU supports

* Add image link to LLM index page

* Hide tips and known issues for now

* Small fix

* Update based on comments

* Small fix

* Add notes for Python 3.9

* Add placehoder optimize model & reveal CLI; small revision

* examples add gpu part

* Hide CLI part again for first version of merging

* add keyfeatures-optimize_model part (#1)

* change gif link to the ones hosted on github

* Small fix

---------

Co-authored-by: plusbang <binbin1.deng@intel.com>
Co-authored-by: binbin Deng <108676127+plusbang@users.noreply.github.com>
2023-09-06 15:38:45 +08:00

167 lines
8.7 KiB
ReStructuredText

.. meta::
:google-site-verification: S66K6GAclKw1RroxU0Rka_2d1LZFVe27M0gRneEsIVI
=================================================
The BigDL Project
=================================================
------
---------------------------------
BigDL-LLM: low-Bit LLM library
---------------------------------
.. raw:: html
<p>
<a href="https://github.com/intel-analytics/BigDL/tree/main/python/llm"><code><span>bigdl-llm</span></code></a> is a library for running <strong>LLM</strong> (large language model) on your Intel <strong>laptop</strong> or <strong>GPU</strong> using INT4 with very low latency <sup><a href="#footnote-perf" id="ref-perf">[1]</a></sup> (for any <strong>PyTorch</strong> model).
</p>
.. note::
It is built on top of the excellent work of `llama.cpp <https://github.com/ggerganov/llama.cpp>`_, `gptq <https://github.com/IST-DASLab/gptq>`_, `bitsandbytes <https://github.com/TimDettmers/bitsandbytes>`_, `qlora <https://github.com/artidoro/qlora>`_, etc.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Latest update
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``bigdl-llm`` now supports Intel Arc and Flex GPU; see the the latest GPU examples `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/gpu>`_.
- ``bigdl-llm`` tutorial is released `here <https://github.com/intel-analytics/bigdl-llm-tutorial>`_.
- Over 20 models have been verified on ``bigdl-llm``, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, QWen, Baichuan,* and more; see the complete list `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/README.md#verified-models>`_.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``bigdl-llm`` demos
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
See the **optimized performance** of ``chatglm2-6b``, ``llama-2-13b-chat``, and ``starcoder-15.5b`` models on a 12th Gen Intel Core CPU below.
.. raw:: html
<p align="center">
<a href="https://llm-assets.readthedocs.io/en/latest/_images/chatglm2-6b.gif"><img src="https://llm-assets.readthedocs.io/en/latest/_images/chatglm2-6b.gif" width='30%'></a> <a href="https://llm-assets.readthedocs.io/en/latest/_images/llama-2-13b-chat.gif"><img src="https://llm-assets.readthedocs.io/en/latest/_images/llama-2-13b-chat.gif" width='30%' ></a> <a href="https://llm-assets.readthedocs.io/en/latest/_images/llm-15b5.gif"><img src="https://llm-assets.readthedocs.io/en/latest/_images/llm-15b5.gif" width='30%' ></a>
<img src="https://llm-assets.readthedocs.io/en/latest/_images/llm-models3.png" width='76%'>
</p>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``bigdl-llm`` quickstart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You may install ``bigdl-llm`` as follows:
.. code-block:: console
pip install --pre --upgrade bigdl-llm[all]
.. note::
``bigdl-llm`` has been tested on Python 3.9.
You can then apply INT4 optimizations to any Hugging Face *Transformers* models as follows.
.. code-block:: python
#load Hugging Face Transformers model with INT4 optimizations
from bigdl.llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
#run the optimized model
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
input_ids = tokenizer.encode(input_str, ...)
output_ids = model.generate(input_ids, ...)
output = tokenizer.batch_decode(output_ids)
**For more details, please refer to the bigdl-llm** `Readme <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_, `Tutorial <https://github.com/intel-analytics/bigdl-llm-tutorial>`_ and `API Doc <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html>`_.
------
---------------------------------
Overview of the complete BigDL project
---------------------------------
`BigDL <https://github.com/intel-analytics/bigdl>`_ seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
- `LLM <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
- `Orca <doc/Orca/index.html>`_: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray
- `Nano <doc/Nano/index.html>`_: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU
- `DLlib <doc/DLlib/index.html>`_: "Equivalent of Spark MLlib" for Deep Learning
- `Chronos <doc/Chronos/index.html>`_: Scalable Time Series Analysis using AutoML
- `Friesian <doc/Friesian/index.html>`_: End-to-End Recommendation Systems
- `PPML <doc/PPML/index.html>`_: Secure Big Data and AI (with SGX Hardware Security)
------
---------------------------------
Choosing the right BigDL library
---------------------------------
.. graphviz::
digraph BigDLDecisionTree {
graph [pad=0.1 ranksep=0.3 tooltip=" "]
node [color="#0171c3" shape=box fontname="Arial" fontsize=14 tooltip=" "]
edge [tooltip=" "]
Feature1 [label="Hardware Secured Big Data & AI?"]
Feature2 [label="Python vs. Scala/Java?"]
Feature3 [label="What type of application?"]
Feature4 [label="Domain?"]
LLM[href="https://github.com/intel-analytics/BigDL/blob/main/python/llm" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-LLM document"]
Orca[href="../doc/Orca/index.html" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Orca document"]
Nano[href="../doc/Nano/index.html" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Nano document"]
DLlib1[label="DLlib" href="../doc/DLlib/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-DLlib document"]
DLlib2[label="DLlib" href="../doc/DLlib/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-DLlib document"]
Chronos[href="../doc/Chronos/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Chronos document"]
Friesian[href="../doc/Friesian/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Friesian document"]
PPML[href="../doc/PPML/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-PPML document"]
ArrowLabel1[label="No" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel2[label="Yes" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel3[label="Python" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel4[label="Scala/Java" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel5[label="Large Language Model" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel6[label="Big Data + \n AI (TF/PyTorch)" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel7[label="Accelerate \n TensorFlow / PyTorch" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel8[label="DL for Spark MLlib" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel9[label="High Level App Framework" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel10[label="Time Series" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel11[label="Recommender System" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
Feature1 -> ArrowLabel1[dir=none]
ArrowLabel1 -> Feature2
Feature1 -> ArrowLabel2[dir=none]
ArrowLabel2 -> PPML
Feature2 -> ArrowLabel3[dir=none]
ArrowLabel3 -> Feature3
Feature2 -> ArrowLabel4[dir=none]
ArrowLabel4 -> DLlib1
Feature3 -> ArrowLabel5[dir=none]
ArrowLabel5 -> LLM
Feature3 -> ArrowLabel6[dir=none]
ArrowLabel6 -> Orca
Feature3 -> ArrowLabel7[dir=none]
ArrowLabel7 -> Nano
Feature3 -> ArrowLabel8[dir=none]
ArrowLabel8 -> DLlib2
Feature3 -> ArrowLabel9[dir=none]
ArrowLabel9 -> Feature4
Feature4 -> ArrowLabel10[dir=none]
ArrowLabel10 -> Chronos
Feature4 -> ArrowLabel11[dir=none]
ArrowLabel11 -> Friesian
}
------
.. raw:: html
<div>
<p>
<sup><a href="#ref-perf" id="footnote-perf">[1]</a>
Performance varies by use, configuration and other factors. <code><span>bigdl-llm</span></code> may not optimize to the same degree for non-Intel products. Learn more at <a href="https://www.Intel.com/PerformanceIndex">www.Intel.com/PerformanceIndex</a>.
</sup>
</p>
</div>