* Add Modelscope option for GPU model chatglm3 * Update readme * Update readme * Update readme * Update readme * format update --------- Co-authored-by: ATMxsp01 <shou.xu@intel.com>
		
			
				
	
	
		
			85 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from ipex_llm.transformers import AutoModel
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM3 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str,
 | 
						|
                        help='The Hugging Face or ModelScope repo id for the ChatGLM3 model to be downloaded'
 | 
						|
                             ', or the path to the checkpoint folder')
 | 
						|
    parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
 | 
						|
                        help='Qustion you want to ask')
 | 
						|
    parser.add_argument('--disable-stream', action="store_true",
 | 
						|
                        help='Disable stream chat')
 | 
						|
    parser.add_argument('--modelscope', action="store_true", default=False, 
 | 
						|
                        help="Use models from modelscope")
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    
 | 
						|
    if args.modelscope:
 | 
						|
        from modelscope import AutoTokenizer
 | 
						|
        model_hub = 'modelscope'
 | 
						|
    else:
 | 
						|
        from transformers import AutoTokenizer
 | 
						|
        model_hub = 'huggingface'
 | 
						|
    
 | 
						|
    model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
 | 
						|
        ("ZhipuAI/chatglm3-6b" if args.modelscope else "THUDM/chatglm3-6b")
 | 
						|
 | 
						|
    disable_stream = args.disable_stream
 | 
						|
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = AutoModel.from_pretrained(model_path,
 | 
						|
                                      load_in_4bit=True,
 | 
						|
                                      trust_remote_code=True,
 | 
						|
                                      optimize_model=True,
 | 
						|
                                      model_hub=model_hub)
 | 
						|
    model = model.half().to('xpu')
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						|
                                              trust_remote_code=True)
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        prompt = args.question
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						|
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=32)
 | 
						|
 | 
						|
        # start inference
 | 
						|
        if disable_stream:
 | 
						|
            # Chat
 | 
						|
            response, history = model.chat(tokenizer, args.question, history=[])
 | 
						|
            print('-'*20, 'Chat Output', '-'*20)
 | 
						|
            print(response)
 | 
						|
        else:
 | 
						|
            # Stream chat
 | 
						|
            response_ = ""
 | 
						|
            print('-'*20, 'Stream Chat Output', '-'*20)
 | 
						|
            for response, history in model.stream_chat(tokenizer, args.question, history=[]):
 | 
						|
                print(response.replace(response_, ""), end="")
 | 
						|
                response_ = response
 |