* LLM: init one-click installer for windows * LLM: fix typo in one-click installer readme * LLM: one-click installer try except logic * LLM: one-click installer add dependency * LLM: one-click installer adjust README.md * LLM: one-click installer split README and add zip compress in setup.bat * LLM: one-click installer verified internlm and llama2 and replace gif * LLM: remove one-click installer images * LLM: finetune the one-click installer README.md * LLM: fix typo in one-click installer README.md * LLM: rename one-click installer to protable executable * LLM: rename other places to protable executable * LLM: rename the zip filename to executable * LLM: update .gitignore * LLM: add colorama to setup.bat
		
			
				
	
	
		
			116 lines
		
	
	
		
			No EOL
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			No EOL
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import argparse
 | 
						|
import sys
 | 
						|
 | 
						|
# todo: support more model class
 | 
						|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig
 | 
						|
from transformers import TextIteratorStreamer
 | 
						|
from transformers.tools.agents import StopSequenceCriteria
 | 
						|
from transformers.generation.stopping_criteria import StoppingCriteriaList
 | 
						|
 | 
						|
from colorama import Fore
 | 
						|
 | 
						|
from bigdl.llm import optimize_model
 | 
						|
 | 
						|
SYSTEM_PROMPT = "A chat between a curious human <human> and an artificial intelligence assistant <bot>.\
 | 
						|
The assistant gives helpful, detailed, and polite answers to the human's questions."
 | 
						|
HUMAN_ID = "<human>"
 | 
						|
BOT_ID = "<bot>"
 | 
						|
 | 
						|
# chat_history formated in [(iput_str, output_str)]
 | 
						|
def format_prompt(input_str,
 | 
						|
                  chat_history):
 | 
						|
    prompt = [f"{SYSTEM_PROMPT}\n"]
 | 
						|
    for history_input_str, history_output_str in chat_history:
 | 
						|
        prompt.append(f"{HUMAN_ID} {history_input_str}\n{BOT_ID} {history_output_str}\n")
 | 
						|
    prompt.append(f"{HUMAN_ID} {input_str}\n{BOT_ID} ")
 | 
						|
 | 
						|
    return "".join(prompt)
 | 
						|
 | 
						|
def stream_chat(model,
 | 
						|
                tokenizer,
 | 
						|
                stopping_criteria,
 | 
						|
                input_str,
 | 
						|
                chat_history):
 | 
						|
    prompt = format_prompt(input_str, chat_history)
 | 
						|
    # print(prompt)
 | 
						|
    input_ids = tokenizer([prompt], return_tensors="pt")
 | 
						|
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
 | 
						|
    generate_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=512, stopping_criteria=stopping_criteria)
 | 
						|
 | 
						|
    from threading import Thread
 | 
						|
    # to ensure non-blocking access to the generated text, generation process should be ran in a separate thread
 | 
						|
    thread = Thread(target=model.generate, kwargs=generate_kwargs)
 | 
						|
    thread.start()
 | 
						|
 | 
						|
    output_str = []
 | 
						|
    print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
 | 
						|
    for partial_output_str in streamer:
 | 
						|
        output_str.append(partial_output_str)
 | 
						|
        # remove the last HUMAN_ID if exists
 | 
						|
        print(partial_output_str.replace(f"{HUMAN_ID}", ""), end="")
 | 
						|
 | 
						|
    chat_history.append((input_str, "".join(output_str).replace(f"{HUMAN_ID}", "").rstrip()))
 | 
						|
 | 
						|
def auto_select_model(model_name):
 | 
						|
    try:
 | 
						|
        try:
 | 
						|
            model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                        low_cpu_mem_usage=True,
 | 
						|
                                                        torch_dtype="auto",
 | 
						|
                                                        trust_remote_code=True,
 | 
						|
                                                        use_cache=True)
 | 
						|
        except:
 | 
						|
            model = AutoModel.from_pretrained(model_path,
 | 
						|
                                             low_cpu_mem_usage=True,
 | 
						|
                                             torch_dtype="auto",
 | 
						|
                                             trust_remote_code=True,
 | 
						|
                                             use_cache=True)
 | 
						|
    except:
 | 
						|
        print("Sorry, the model you entered is not supported in installer.")
 | 
						|
        sys.exit()
 | 
						|
    
 | 
						|
    return model
 | 
						|
  
 | 
						|
if __name__ == "__main__":
 | 
						|
  parser = argparse.ArgumentParser()
 | 
						|
  parser.add_argument("--model-path", type=str, help="path to an llm")
 | 
						|
  args = parser.parse_args()
 | 
						|
 | 
						|
  model_path = args.model_path
 | 
						|
  
 | 
						|
  model = auto_select_model(model_path)
 | 
						|
  model = optimize_model(model)
 | 
						|
 | 
						|
  tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
  stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
 | 
						|
 | 
						|
  chat_history = []
 | 
						|
 | 
						|
  while True:
 | 
						|
      with torch.inference_mode():
 | 
						|
          user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
						|
          if user_input == "stop": # let's stop the conversation when user input "stop"
 | 
						|
              break
 | 
						|
          stream_chat(model=model,
 | 
						|
                      tokenizer=tokenizer,
 | 
						|
                      stopping_criteria=stopping_criteria,
 | 
						|
                      input_str=user_input,
 | 
						|
                      chat_history=chat_history) |