ipex-llm/python/llm/src/ipex_llm/transformers/embedding.py

241 lines
9.1 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy
import torch
from torch import Tensor
from torch.nn import Parameter
from typing import Optional
from ipex_llm.transformers.low_bit_linear import FP4Params
from ipex_llm.utils.common import invalidInputError
# To prevent insufficient available memory when moving embedding from XPU back to CPU,
# we can pin the embedding to CPU if `cpu_embedding==True`.
class CPUPinnedParam(Parameter):
# Overwrite the device attribute for CPUPinnedParam so that its device will be same as
# the device for model.to(device);
# With this device attribute, model.device will be same as the
# the device for model.to(device) even with cpu_embedding==True
@property
def device(self):
try:
return self._device
except AttributeError:
return super().device
@device.setter
def device(self, to_device):
self._device = to_device
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
if device is None:
return super().to(*args, **kwargs)
elif device.type == 'xpu':
self.device = device
if convert_to_format is not None and self.dim() in (4, 5):
return super().to('cpu', dtype,
non_blocking, memory_format=convert_to_format)
return super().to('cpu', dtype, non_blocking)
return super().to(*args, **kwargs)
class CPUEmbedding(torch.nn.Embedding):
def __init__(self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
_freeze: bool = False,
device=None,
dtype=None) -> None:
super().__init__(num_embeddings, embedding_dim, padding_idx,
max_norm, norm_type, scale_grad_by_freq,
sparse, _weight, True, device, dtype)
self.weight = CPUPinnedParam(self.weight.data, requires_grad=False)
def forward(self, x: Tensor):
return super().forward(x.to('cpu')).to(x.device)
@classmethod
def from_embedding(cls, embedding: torch.nn.Embedding):
return cls(
embedding.num_embeddings,
embedding.embedding_dim,
embedding.padding_idx,
embedding.max_norm,
embedding.norm_type,
embedding.scale_grad_by_freq,
embedding.sparse,
embedding.weight.data,
True,
embedding.weight.device,
embedding.weight.dtype,
)
class DiskEmbedding(torch.nn.Embedding):
def __init__(self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
_freeze: bool = False,
device=None,
dtype=None) -> None:
super().__init__(num_embeddings, embedding_dim, padding_idx,
max_norm, norm_type, scale_grad_by_freq,
sparse, _weight, True, device, dtype)
self.filename = "embeddings.bin"
self.weight.data.flatten().to(device='cpu', dtype=torch.half).numpy().tofile(self.filename)
dummy_weight = torch.empty(0, 0, dtype=self.weight.dtype, device=self.weight.device)
self.weight = torch.nn.Parameter(dummy_weight, requires_grad=False)
def forward(self, input_ids: Tensor):
ids = input_ids.cpu().flatten()
embeds = []
with open(self.filename, 'rb') as f:
for idx in ids:
f.seek(idx * self.embedding_dim * 2)
buffer = f.read(self.embedding_dim * 2)
embeds.append(torch.frombuffer(buffer, dtype=torch.half))
embeds = torch.stack(embeds).to(device=input_ids.device, dtype=self.weight.dtype)
return embeds.view(*input_ids.size(), self.embedding_dim)
@classmethod
def from_embedding(cls, embedding: torch.nn.Embedding):
return cls(
embedding.num_embeddings,
embedding.embedding_dim,
embedding.padding_idx,
embedding.max_norm,
embedding.norm_type,
embedding.scale_grad_by_freq,
embedding.sparse,
embedding.weight.data,
True,
embedding.weight.device,
embedding.weight.dtype,
)
def to_embedding(self):
with open(self.filename, 'rb') as f:
buffer = f.read()
embeds = torch.frombuffer(buffer, dtype=torch.half).clone()
embeds = embeds.view(self.num_embeddings, self.embedding_dim).to(
device=self.weight.device, dtype=self.weight.dtype
)
return torch.nn.Embedding(
self.num_embeddings,
self.embedding_dim,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
embeds,
True,
embeds.device,
embeds.dtype,
)
@staticmethod
def replace_normal_embedding(m: torch.nn.Module):
for name, module in m.named_children():
if type(module) == torch.nn.Embedding:
m._modules[name] = DiskEmbedding.from_embedding(module)
@staticmethod
def restore_normal_embedding(m: torch.nn.Module):
for name, module in m.named_children():
if type(module) == DiskEmbedding:
m._modules[name] = module.to_embedding()
class LowBitEmbedding(torch.nn.Embedding):
def __init__(self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
_freeze: bool = False,
device=None,
dtype=None,
convert_shape_only=None,
qtype=None) -> None:
super().__init__(num_embeddings, embedding_dim, padding_idx,
max_norm, norm_type, scale_grad_by_freq, sparse,
_weight, device, dtype)
self.qweight = FP4Params(self.weight.data,
requires_grad=False,
quantized=False,
_shape=None,
convert_shape_only=convert_shape_only,
qtype=qtype,
in_features=embedding_dim)
# this dummy_weight is used to record model's dtype and device
dummy_weight = torch.empty(0, 0, dtype=self.weight.dtype, device=self.weight.device)
self.weight = torch.nn.Parameter(dummy_weight, requires_grad=False)
self.embedding_dim = embedding_dim
self.num_embeddings = num_embeddings
def forward(self, x: Tensor):
invalidInputError(x.device.type == "xpu",
"`LowBitEmbedding` only supports GPU now.")
try:
import xe_linear
except ModuleNotFoundError:
invalidInputError(False,
"Please `pip install bigdl_core_xe_21` first.")
result = xe_linear.dequantize_rows(x.contiguous(), self.qweight.data,
self.qweight.qtype, self.embedding_dim,
self.num_embeddings)
return result.to(self.weight.dtype)
@classmethod
def from_embedding(cls, embedding: torch.nn.Embedding, convert_shape_only, qtype):
return cls(
embedding.num_embeddings,
embedding.embedding_dim,
embedding.padding_idx,
embedding.max_norm,
embedding.norm_type,
embedding.scale_grad_by_freq,
embedding.sparse,
embedding.weight.data,
True,
embedding.weight.device,
embedding.weight.dtype,
convert_shape_only,
qtype,
)