ipex-llm/python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion/lora-lcm.py
Jinhe d2a37b6ab2
add Stable diffusion examples (#12418)
* add openjourney example

* add timing

* add stable diffusion to model page

* 4.1 fix

* small fix
2024-11-20 17:18:36 +08:00

67 lines
No EOL
2.6 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora
import torch
from diffusers import DiffusionPipeline, LCMScheduler
import ipex_llm
import argparse
import time
def main(args):
pipe = DiffusionPipeline.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.bfloat16,
).to("xpu")
# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# load LCM-LoRA
pipe.load_lora_weights(args.lora_weights_path)
generator = torch.manual_seed(42)
with torch.inference_mode():
# warmup
image = pipe(
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
).images[0]
# start inference
st = time.time()
image = pipe(
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
).images[0]
end = time.time()
print(f'Inference time: {end-st} s')
image.save(args.save_path)
if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl",
help='The huggingface repo id for the lcm lora sdxl checkpoint')
parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-gpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=4,
help="Number of inference steps")
args = parser.parse_args()
main(args)