* Fix ipex auto importer with Python builtins. * Raise errors if the user imports ipex manually before importing ipex_llm. Do nothing if they import ipex after importing ipex_llm. * Remove import ipex in examples.
89 lines
3.2 KiB
Python
89 lines
3.2 KiB
Python
#
|
||
# Copyright 2016 The BigDL Authors.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
|
||
import torch
|
||
import time
|
||
import argparse
|
||
|
||
from transformers import AutoTokenizer
|
||
from ipex_llm import optimize_model
|
||
import numpy as np
|
||
|
||
|
||
if __name__ == '__main__':
|
||
parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat')
|
||
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat",
|
||
help='The huggingface repo id for the Qwen1.5 model to be downloaded'
|
||
', or the path to the huggingface checkpoint folder')
|
||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||
help='Prompt to infer')
|
||
parser.add_argument('--n-predict', type=int, default=32,
|
||
help='Max tokens to predict')
|
||
|
||
args = parser.parse_args()
|
||
model_path = args.repo_id_or_model_path
|
||
|
||
|
||
from ipex_llm.transformers import AutoModelForCausalLM
|
||
# Load model in 4 bit,
|
||
# which convert the relevant layers in the model into INT4 format
|
||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||
load_in_4bit=True,
|
||
trust_remote_code=True)
|
||
model = model.half().to("xpu")
|
||
|
||
# Load tokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||
trust_remote_code=True)
|
||
|
||
prompt = args.prompt
|
||
|
||
# Generate predicted tokens
|
||
with torch.inference_mode():
|
||
messages = [
|
||
{"role": "system", "content": "You are a helpful assistant."},
|
||
{"role": "user", "content": prompt}
|
||
]
|
||
text = tokenizer.apply_chat_template(
|
||
messages,
|
||
tokenize=False,
|
||
add_generation_prompt=True
|
||
)
|
||
model_inputs = tokenizer([text], return_tensors="pt").to("xpu")
|
||
# warmup
|
||
generated_ids = model.generate(
|
||
model_inputs.input_ids,
|
||
max_new_tokens=args.n_predict
|
||
)
|
||
|
||
st = time.time()
|
||
generated_ids = model.generate(
|
||
model_inputs.input_ids,
|
||
max_new_tokens=args.n_predict
|
||
)
|
||
torch.xpu.synchronize()
|
||
end = time.time()
|
||
generated_ids = generated_ids.cpu()
|
||
generated_ids = [
|
||
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
||
]
|
||
|
||
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||
print(f'Inference time: {end-st} s')
|
||
print('-'*20, 'Prompt', '-'*20)
|
||
print(prompt)
|
||
print('-'*20, 'Output', '-'*20)
|
||
print(response)
|