ipex-llm/python/llm/example/GPU/ModelScope-Models/Save-Load/generate.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

78 lines
3.4 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers import AutoModelForCausalLM
from modelscope import AutoTokenizer
# you could tune the prompt based on your own model,
BAICHUAN_PROMPT_FORMAT = "<human>{prompt} <bot>"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
parser.add_argument('--repo-id-or-model-path', type=str, default="baichuan-inc/Baichuan2-7B-Chat",
help='The ModelScope repo id for the Baichuan model to be downloaded to be downloaded'
', or the path to the ModelScope checkpoint folder')
parser.add_argument('--save-path', type=str, default=None,
help='The path to save the low-bit model.')
parser.add_argument('--load-path', type=str, default=None,
help='The path to load the low-bit model.')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
load_path = args.load_path
if load_path:
model = AutoModelForCausalLM.load_low_bit(load_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(load_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
model_hub='modelscope')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
save_path = args.save_path
if save_path:
model.save_low_bit(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer are saved to {save_path}")
# please save/load model before you run it on GPU
model = model.to('xpu')
# Generate predicted tokens
with torch.inference_mode():
prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)